Annals of Biomedical Engineering

, Volume 42, Issue 6, pp 1292–1304 | Cite as

Estimating Cell Concentration in Three-Dimensional Engineered Tissues Using High Frequency Quantitative Ultrasound

  • Karla P. Mercado
  • María Helguera
  • Denise C. Hocking
  • Diane Dalecki


Histology and biochemical assays are standard techniques for estimating cell concentration in engineered tissues. However, these techniques are destructive and cannot be used for longitudinal monitoring of engineered tissues during fabrication processes. The goal of this study was to develop high-frequency quantitative ultrasound techniques to nondestructively estimate cell concentration in three-dimensional (3-D) engineered tissue constructs. High-frequency ultrasound backscatter measurements were obtained from cell-embedded, 3-D agarose hydrogels. Two broadband single-element transducers (center frequencies of 30 and 38 MHz) were employed over the frequency range of 13–47 MHz. Agarose gels with cell concentrations ranging from 1 × 104 to 1 × 106 cells mL−1 were investigated. The integrated backscatter coefficient (IBC), a quantitative ultrasound spectral parameter, was calculated and used to estimate cell concentration. Accuracy and precision of this technique were analyzed by calculating the percent error and coefficient of variation of cell concentration estimates. The IBC increased linearly with increasing cell concentration. Axial and lateral dimensions of regions of interest that resulted in errors of less than 20% were determined. Images of cell concentration estimates were employed to visualize quantitatively regional differences in cell concentrations. This ultrasound technique provides the capability to rapidly quantify cell concentration within 3-D tissue constructs noninvasively and nondestructively.


Ultrasound tissue characterization Integrated backscatter coefficient Nondestructive evaluation Parametric imaging Tissue engineering 

Supplementary material

10439_2014_994_MOESM1_ESM.pdf (671 kb)
Supplementary material 1 (PDF 671 kb)
10439_2014_994_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)


  1. 1.
    Aubry, A., and A. Derode. Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues. J. Acoust. Soc. Am. 129:225–233, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Bamber, J. C. Ultrasonic properties of tissues. In: Ultrasound in Medicine, edited by F. A. Duck, A. C. Baker, and H. C. Starritt. Bristol, UK: Institute of Physics Publishing, 1998, pp. 57–88.Google Scholar
  3. 3.
    Bendat, J. S., and A. G. Piersol. Random Data Analysis and Measurement Procedures. New York: Whiley, p. 93, 2000.Google Scholar
  4. 4.
    Brand, S., E. C. Weiss, R. M. Lemor, and M. C. Kolios. High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound Med. Biol. 34:1396–1407, 2008.PubMedCrossRefGoogle Scholar
  5. 5.
    Couture, O. Ultrasound Echoes from Targeted Contrast Agents. Ph.D. Thesis, Graduate Department in Medical Biophysics, University of Toronto, Toronto, 2007.Google Scholar
  6. 6.
    Fite, B. Z., M. Decaris, Y. Sun, Y. Sun, A. Lam, C. K. Ho, J. K. Leach, and L. Marcu. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging. Tissue Eng. Part C 17:495–504, 2011.CrossRefGoogle Scholar
  7. 7.
    Franceschini, E., and R. Guillermin. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms. J. Acoust. Soc. Am. 132:3735–3747, 2012.PubMedCrossRefGoogle Scholar
  8. 8.
    Garvin, K. A., D. C. Hocking, and D. Dalecki. Controlling the spatial organization of cells and extracellular matrix proteins in engineered tissues using ultrasound standing wave fields. Ultrasound Med Biol. 36:1919–1932, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ghoshal, G., M. L. Oelze, and W. D. O’Brien. Quantitative ultrasound history and successes. In: Quantitative Ultrasound in Soft Tissues, edited by J. Mamou, and M. L. Oelze. New York: Springer, 2013, pp. 21–42.CrossRefGoogle Scholar
  10. 10.
    Gudur, M., R. R. Rao, Y. S. Hsiao, A. W. Peterson, C. X. Deng, and J. P. Stegemann. Noninvasive, quantitative, spatiotemporal characterization of mineralization in three-dimensional collagen hydrogels using high-resolution spectral ultrasound imaging. Tissue Eng. Part C 18:935–946, 2012.CrossRefGoogle Scholar
  11. 11.
    Guidance for Industry: Bioanalytical Method Validation. F. D. A. US Department of Health and Human Services, Center for Drug Evaluation and Research, Rockville, MD, 2001.Google Scholar
  12. 12.
    Insana, M. F., and T. J. Hall. Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation. Ultrason. Imaging 12:245–267, 1990.PubMedCrossRefGoogle Scholar
  13. 13.
    Insana, M. F., R. F. Wagner, D. G. Brown, and T. J. Hall. Describing small-scale structure in random media using pulse-echo ultrasound. J. Acoust. Soc. Am. 87:179–192, 1990.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Tissue Engineering. Advancing tissue science and engineering: a foundation for the future. A multi-agency strategic plan. Tissue Eng. 13:2825–2826, 2007.CrossRefGoogle Scholar
  15. 15.
    Katouzian, A., S. Sathyanarayana, B. Baseri, E. E. Konofagou, and S. G. Carlier. Challenges in atherosclerotic plaque characterization with intravascular ultrasound (IVUS): from data collection to classification. IEEE Trans. Inf. Technol. Biomed. 12:315–327, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Kemmerer, J. P., and M. L. Oelze. Quantitative ultrasound assessment of thermal therapy in liver. J. Acoust. Soc. Am. 129:2440, 2011.CrossRefGoogle Scholar
  17. 17.
    Kemmerer, J. P., and M. L. Oelze. Ultrasonic assessment of thermal therapy in rat liver. Ultrasound Med. Biol. 38:2130–2137, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kolios, M. C., G. J. Czarnota, M. Lee, J. W. Hunt, and M. D. Sherar. Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med. Biol. 28:589–597, 2002.PubMedCrossRefGoogle Scholar
  19. 19.
    Kreitz, S., G. Dohmen, S. Hasken, T. Schmitz-Rode, P. Mela, and S. Jockenhoevel. Nondestructive method to evaluate the collagen content of fibrin-based tissue engineered structures via ultrasound. Tissue Eng. Part C 17:1021–1026, 2011.CrossRefGoogle Scholar
  20. 20.
    Leithem, S. M., R. J. Lavarello, W. D. O’Brien, and M. L. Oelze. Estimating concentration of ultrasound contrast agents with backscatter coefficients: experimental and theoretical aspects. J. Acoust. Soc. Am. 131:2295–2305, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Libgot-Calle, R., F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat. High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation. Ultrasound Med. Biol. 34:252–264, 2008.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu, W., and J. A. Zagzebski. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations. IEEE Trans. Ultrason. Ferroelectr. 57:340–352, 2010.CrossRefGoogle Scholar
  23. 23.
    Lizzi, F. L., M. Astor, E. J. Feleppa, M. Shao, and A. Kalisz. Statistical framework for ultrasonic spectral parameter imaging. Ultrasound Med. Biol. 23:1371–1382, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Lizzi, F. L., M. Astor, T. Liu, C. Deng, D. Coleman, and R. Silverman. Ultrasonic spectrum analysis for tissue assays and therapy evaluation. Int. J. Imaging Syst. Technol. 8:3–10, 1997.CrossRefGoogle Scholar
  25. 25.
    Lizzi, F. L., M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman. Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J. Acoust. Soc. Am. 73:1366–1373, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Lizzi, F., M. Ostromogilsky, E. Feleppa, M. Rorke, and M. Yaremko. Relationship of ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans. Ultrason. Ferroelectr. 33:319–329, 1986.Google Scholar
  27. 27.
    Machado, J. C., and F. S. Foster. Ultrasonic integrated backscatter coefficient profiling of human coronary arteries in vitro. IEEE Trans. Ultrason. Ferroelectr. 48:17–27, 2001.CrossRefGoogle Scholar
  28. 28.
    McCormick, M. M., E. L. Madsen, M. E. Deaner, and T. Varghese. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5–50 MHz frequency range. J. Acoust. Soc. Am. 130:737–743, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Oe, K., M. Miwa, K. Nagamune, Y. Sakai, S. Y. Lee, T. Niikura, T. Iwakura, T. Hasegawa, N. Shibanuma, Y. Hata, R. Kuroda, and M. Kurosaka. Nondestructive evaluation of cell numbers in bone marrow stromal cell/beta-tricalcium phosphate composites using ultrasound. Tissue Eng. Part C 16:347–353, 2010.CrossRefGoogle Scholar
  30. 30.
    Oelze, M. L., and W. D. O’Brien, Jr. Defining optimal axial and lateral resolution for estimating scatterer properties from volumes using ultrasound backscatter. J. Acoust. Soc. Am. 115:3226–3234, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Pancrazio, J. J., F. Wang, and C. A. Kelley. Enabling tools for tissue engineering. Biosens. Bioelectron. 22:2803–2811, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Pinkerton, J. M. M. The absorption of ultrasonic waves in liquids and its relation to molecular constitution. Proc. Phys. Soc. 62:129–141, 1949.CrossRefGoogle Scholar
  33. 33.
    Raju, B. I., and M. A. Srinivasan. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat. Ultrasound Med. Biol. 27:1543–1556, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Raju, B. I., K. J. Swindells, S. Gonzalez, and M. A. Srinivasan. Quantitative ultrasonic methods for characterization of skin lesions in vivo. Ultrasound Med. Biol. 29:825–838, 2003.PubMedCrossRefGoogle Scholar
  35. 35.
    Reid, J. M. Standard substitution methods for measuring ultrasonic scattering in tissues. In: Ultrasonic Scattering in Biological Tissues, edited by K. K. Shung, and G. A. Thieme. Boca Raton, FL: CRC Press, 1993, pp. 171–204.Google Scholar
  36. 36.
    Roberjot, V., S. L. Bridal, P. Laugier, and G. Berger. Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers. IEEE Trans. Ultrason. Ferroelectr. 43:970–978, 1996.CrossRefGoogle Scholar
  37. 37.
    Saha, R. K., E. Franceschini, and G. Cloutier. Assessment of accuracy of the structure-factor-size-estimator method in determining red blood cell aggregate size from ultrasound spectral backscatter coefficient. J. Acoust. Soc. Am. 129:2269–2277, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Saha, R. K., and M. C. Kolios. Effects of cell spatial organization and size distribution on ultrasound backscattering. IEEE Trans. Ultrason. Ferroelectr. 58:2118–2131, 2011.CrossRefGoogle Scholar
  39. 39.
    Solorio, L., B. M. Babin, R. B. Patel, J. Mach, N. Azar, and A. A. Exner. Noninvasive characterization of in situ forming implants using diagnostic ultrasound. J. Controlled Release 143:183–190, 2010.CrossRefGoogle Scholar
  40. 40.
    Szabo, T. L. Diagnostic Ultrasound Imaging: Inside Out. Burlington, MA: Elsevier Academic Press, 2004, pp. 243–269, 442–444.Google Scholar
  41. 41.
    Taggart, L. R., R. E. Baddour, A. Giles, G. J. Czarnota, and M. C. Kolios. Ultrasonic characterization of whole cells and isolated nuclei. Ultrasound Med. Biol. 33:389–401, 2007.PubMedCrossRefGoogle Scholar
  42. 42.
    Vlad, R. M., S. Brand, A. Giles, M. C. Kolios, and G. J. Czarnota. Quantitative ultrasound characterization of responses to radiotherapy in cancer mouse models. Clin. Cancer Res. 15:2067–2075, 2009.PubMedCrossRefGoogle Scholar
  43. 43.
    Waag, R. C., P. P. K. Lee, R. M. Lerner, L. P. Hunter, R. Gramiak, and E. A. Schenk. Angle scan and frequency-swept ultrasonic scattering characterization of tissue. In: Ultrasound in Medicine, edited by D. White, and E. A. Lyons. New York, NY: Plenum Press, 1978, pp. 563–565.Google Scholar
  44. 44.
    Wagner, R. F., M. F. Insana, and D. G. Brown. Statistical properties of radiofrequency and envelope-detected signals with applications to medical ultrasound. J. Opt. Soc. Am. 4:910–922, 1987.CrossRefGoogle Scholar
  45. 45.
    Zagzebski, J. A., L. X. Yao, E. J. Boote, and Z. F. Lu. Quantitative backscatter imaging. In: Ultrasonic Scattering in Biological Tissues, edited by K. K. Shung, and G. A. Thieme. Boca Raton, FL: CRC Press, 1993, pp. 451–486.Google Scholar
  46. 46.
    Zhang, D., X. F. Gong, and S. G. Ye. Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics. J. Acoust. Soc. Am. 99:2397–2402, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Karla P. Mercado
    • 1
    • 2
  • María Helguera
    • 2
    • 3
  • Denise C. Hocking
    • 1
    • 2
    • 4
  • Diane Dalecki
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of RochesterRochesterUSA
  2. 2.The Rochester Center for Biomedical UltrasoundUniversity of RochesterRochesterUSA
  3. 3.Chester F. Carlson Center for Imaging ScienceRochester Institute of TechnologyRochesterUSA
  4. 4.Department of Pharmacology and PhysiologyUniversity of RochesterRochesterUSA

Personalised recommendations