Annals of Biomedical Engineering

, Volume 42, Issue 5, pp 1012–1023 | Cite as

Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models

Article

Abstract

In this work we employ integer- and fractional-order viscoelastic models in a one-dimensional blood flow solver, and study their behavior by presenting an in-silico study on a large patient-specific cranial network. The use of fractional-order models is motivated by recent experimental studies indicating that such models provide a new flexible alternative to fitting biological tissue data. This is attributed to their inherent ability to control the interplay between elastic energy storage and viscous dissipation by tuning a single parameter, the fractional order α, as well as to account for a continuous viscoelastic relaxation spectrum. We perform simulations using four viscoelastic parameter data-sets aiming to compare different viscoelastic models and highlight the important role played by the fractional order. Moreover, we carry out a detailed global stochastic sensitivity analysis study to quantify uncertainties of the input parameters that define each wall model. Our results confirm that the effect of fractional models on hemodynamics is primarily controlled by the fractional order, which affects pressure wave propagation by introducing viscoelastic dissipation in the system.

Keywords

1D blood flow Viscoelasticity Fractional-order constitutive laws Global stochastic sensitivity 

References

  1. 1.
    Alastruey, J., A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, and J. Peiró. Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech. 44:2250–2258, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Atanacković, T. M., S. Konjik, L. Oparnica, and D. Zorica. Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011:1–32, 2011.Google Scholar
  3. 3.
    Bia, D., I. Aguirre, Y. Zócalo, L. Devera, E. Cabrera Fischer, and R. L. Armentano. Regional differences in viscosity, elasticity, and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure–diameter relationship. Rev. Esp. Cardiol. (Engl. Ed.) 58:167–174, 2005.Google Scholar
  4. 4.
    Čanić, S., C. J. Hartley, D. Rosenstrauch, J. Tambača, G. Guidoboni, and A. Mikelić. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Ann. Biomed. Eng. 34(4):575–592, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Craiem, D. O., and R. L. Armentano. A fractional derivative model to describe arterial viscoelasticity. Biorheology 44:251–263, 2007.PubMedGoogle Scholar
  6. 6.
    Craiem, D. O., F. J. Rojo, J. M. Atienza, R. L. Armentano, and G. V. Guinea. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53:4543, 2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Craiem, D. O., F. J. Rojo, J. M. Atienza, G. V. Guinea, and R. L. Armentano. Fractional calculus applied to model arterial viscoelasticity. Latin Am. Appl. Res. 38:141–145, 2008.Google Scholar
  8. 8.
    DeVault, K., P. A. Gremaud, V. Novak, M. S. Olufsen, G. Vernieres, and P. Zhao. Blood flow in the circle of willis: modeling and calibration. SIAM Multiscale Model. Simul. 7(2):888–909, 2008.CrossRefGoogle Scholar
  9. 9.
    Doehring, T. C., A. D. Freed, E. O. Carew, I. Vesely, et al. Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J. Biomech. Eng.-Trans. ASME 127:700, 2005.Google Scholar
  10. 10.
    Eringen, A. C. Mechanics of Continua. Huntington, NY: Robert E. Krieger, 1980.Google Scholar
  11. 11.
    Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Vol. 1. New York: Springer, 2009.Google Scholar
  12. 12.
    Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.Google Scholar
  13. 13.
    Grinberg, L., E. Cheever, T. Anor, J. R. Madsen, and G. E. Karniadakis. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann. Biomed. Eng. 39:297–309, 2011.PubMedCrossRefGoogle Scholar
  14. 14.
    López-Fernández, M., C. Lubich, and A. Schädle. Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30:1015–1037, 2008.CrossRefGoogle Scholar
  15. 15.
    Lubich, C., and A. Schädle. Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24:161–182, 2002.CrossRefGoogle Scholar
  16. 16.
    Lundkvist, A., E. Lilleodden, W. Siekhaus, J. Kinney, L. Pruitt, and M. Balooch. Viscoelastic properties of healthy human artery measured in saline solution by AFM-based indentation technique. In: MRS Proceedings, Vol. 436, 1996.Google Scholar
  17. 17.
    Magin, R. L. Fractional Calculus in Bioengineering. Redding: Begell House, 2006.Google Scholar
  18. 18.
    Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London: Imperial College Press, 2010.Google Scholar
  19. 19.
    Näsholm, S. P., and S. Holm. On a fractional Zener elastic wave equation. Fract. Calc. Appl. Anal. 16:26–50, 2013.CrossRefGoogle Scholar
  20. 20.
    Podlubny, I. Fractional Differential Equations, Vol. 198. San Diego: Academic Press, 1998.Google Scholar
  21. 21.
    Podlubny, I. Calculation of the Mittag-Leffler function with desired accuracy. http://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function, 2012. Accessed 12 September 2012.
  22. 22.
    Raghu, R., I. E. Vignon-Clementel, C. A. Figueroa, and C. A. Taylor. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. J. Biomech. Eng.-Trans. ASME 133(8):081003–081003, 2011.CrossRefGoogle Scholar
  23. 23.
    Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:208, 2009.CrossRefGoogle Scholar
  24. 24.
    Reymond, P., F. Perren, F. Lazeyras, and N. Stergiopulos. Patient-specific mean pressure drop in the systemic arterial tree, a comparison between 1-D and 3-D models. J. Biomech. 45(15):2499–2505, 2012.PubMedCrossRefGoogle Scholar
  25. 25.
    Sherwin, S. J., V. Franke, J. Peiro, and K. H. Parker. One-dimensional modelling of a vascular network in space–time variables. J. Eng. Math. 47:217–250, 2012.CrossRefGoogle Scholar
  26. 26.
    Shu, C. W. Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6):1073–1084, 1988.CrossRefGoogle Scholar
  27. 27.
    Smith, N. P., A. J. Pullan, and P. J. Hunter. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018, 2001.CrossRefGoogle Scholar
  28. 28.
    Steele, B. N., D. Valdez-Jasso, M. A. Haider, and M. S. Olufsen. Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall. SIAM J. Appl. Math. 71(4):1123–1143, 2011.CrossRefGoogle Scholar
  29. 29.
    Valdez-Jasso, D., D. Bia, Y. Zócalo, R. L. Armentano, M. Haider, and M. Olufsen. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure–area dynamics under in vivo and ex vivo conditions. Ann. Biomed. Eng. 39(5):1–19, 2011.Google Scholar
  30. 30.
    Witthoft, A., and G. E. Karniadakis. A bidirectional model for communication in the neurovascular unit. J. Theor. Biol. 311:80–93, 2012.PubMedCrossRefGoogle Scholar
  31. 31.
    Xiu, D., and D. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24:619–644, 2002.CrossRefGoogle Scholar
  32. 32.
    Yang, X., M. Choi, G. Lin, and G. E. Karniadakis. Adaptive anova decomposition of stochastic incompressible and compressible flows. J. Comput. Phys. 231:1587–1614, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations