Annals of Biomedical Engineering

, Volume 42, Issue 5, pp 971–985 | Cite as

Combined Computational and Experimental Approach to Improve the Assessment of Mitral Regurgitation by Echocardiography

  • Simon J. Sonntag
  • Wei Li
  • Michael Becker
  • Wiebke Kaestner
  • Martin R. Büsen
  • Nikolaus Marx
  • Dorit Merhof
  • Ulrich Steinseifer


Mitral regurgitation (MR) is one of the most frequent valvular heart diseases. To assess MR severity, color Doppler imaging (CDI) is the clinical standard. However, inadequate reliability, poor reproducibility and heavy user-dependence are known limitations. A novel approach combining computational and experimental methods is currently under development aiming to improve the quantification. A flow chamber for a circulatory flow loop was developed. Three different orifices were used to mimic variations of MR. The flow field was recorded simultaneously by a 2D Doppler ultrasound transducer and Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) simulations were conducted using the same geometry and boundary conditions. The resulting computed velocity field was used to simulate synthetic Doppler signals. Comparison between PIV and CFD shows a high level of agreement. The simulated CDI exhibits the same characteristics as the recorded color Doppler images. The feasibility of the proposed combination of experimental and computational methods for the investigation of MR is shown and the numerical methods are successfully validated against the experiments. Furthermore, it is discussed how the approach can be used in the long run as a platform to improve the assessment of MR quantification.


Mitral valve insufficiency Color Doppler imaging Particle Image Velocimetry Computational Fluid Dynamics Simulated Doppler Ultrasound Validation 



Computer Aided Design


Color Doppler imaging


Computational Fluid Dynamics


Continues wave Doppler


Direct Numerical Simulation


Doppler ultrasound


Fluid-Structure Interaction


Large-Eddy Simulation


Mitral regurgitation


Mitral Valve


Navier–Stokes equations


Proximal isovelocity surface area


Particle Image Velocimetry


Reynolds-averaged Navier–Stokes equations


Structured Auxiliary Mesh


Structured Auxiliary Mesh with element storage


Structured Auxiliary Mesh with Exact Element storage




Simulated Doppler ultrasound





This project was funded by the Exploratory Research Space RWTH Aachen.


  1. 1.
    Adrian, R. J. Particle-imaging techniques for experimental fluid-mechanics. Annu. Rev. Fluid Mech. 23:261–304, 1991.CrossRefGoogle Scholar
  2. 2.
    Aprovitola, A., and F. Denaro. On the application of congruent upwind discretizations for large eddy simulations. J. Comp. Phys. 1:329–343, 2004.CrossRefGoogle Scholar
  3. 3.
    Buck, T., B. Plicht, P. Hunold, R. Mucci, R. Erbel, and R. Levine. Broad-beam spectral Doppler sonification of the vena contracta using matrix-array technology—a new solution for semi-automated quantification of mitral regurgitant flow volume and orifice area. J. Am. Coll. Cardiol. 45:770–779, 2005.PubMedCrossRefGoogle Scholar
  4. 4.
    Durbin, P. A., and B. P. Reif. Statistical theory and modeling for turbulent flows (2nd ed.). West Sussex, UK: John Wiley & Sons, Ldt, 2011.Google Scholar
  5. 5.
    Faletra, F. F. Echocardiography in Mitral Valve Disease. Milan, Italy: Springer Verlag-Italia, 2013.CrossRefGoogle Scholar
  6. 6.
    Ferziger, J. H., and M. Perić. Computational Methods for Fluid Dynamics (3rd ed.). Berlin, Germany: Springer, 2002.CrossRefGoogle Scholar
  7. 7.
    Germano, M., U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7):1760–1765, 1991.CrossRefGoogle Scholar
  8. 8.
    Gorlin, R., and S. G. Gorlin. Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. I. Am. Heart J. 41:1–29, 1951.CrossRefGoogle Scholar
  9. 9.
    Gottdiener, J., J. Panza, S. St John, P. Bannon, H. Kushner, and N. J. Weissman. Testing the test: the reliability of echocardiography in the sequential assessment of mitral regurgitation. Am. Heart J. 144:115–121, 2002.PubMedCrossRefGoogle Scholar
  10. 10.
    Hyodo, E., S. Iwata, A. Tugcu, K. Arai, K. Shimada, T. Muro, et al. Direct measurement of multiple vena contracta areas for assessing the severity of mitral regurgitation using 3D TEE. JACC: Cardiovasc. Imag. 5(7):669–676, 2012.CrossRefGoogle Scholar
  11. 11.
    Iung, B., and A. Vahanian. Epidemiology of valvular heart disease in the adult. Nat. Rev. Cardiol. 8(3):162–172, 2011.PubMedCrossRefGoogle Scholar
  12. 12.
    Jensen, J. A. Field: a program for simulating ultrasound systems. Med. Biol. Eng. Comp., 10th Nordic-Baltic Conference on Biomedical Imaging 4: 351–353, 1996.Google Scholar
  13. 13.
    Jensen, J. A., and N. B. Svendsen. Calculation of pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39:262–267, 1992.CrossRefGoogle Scholar
  14. 14.
    Jones, S. A., and D. P. Giddens. A simulation of transit time effects in Doppler ultrasound signals. Ultrasound Med. Biol. 16:607–619, 1990.PubMedCrossRefGoogle Scholar
  15. 15.
    Kahlert, P., B. Plicht, R. A. Jánosi, M. Kamler, H. Kühl, H. Eggebrecht, et al. The role of imaging in percutaneous mitral valve repair. Herz Kardiovaskuläre Erkrankungen 34(6):458–467, 2009.CrossRefGoogle Scholar
  16. 16.
    Khoshniat, M., G. Stuhne, and D. A. Steinman. Relative performance of geometric search algorithms for interpolating unstructured mesh data. Lecture Notes in Computer Science, International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Montreal, QC, 2003, 391 pp.Google Scholar
  17. 17.
    Khoshniat, M., M. L. Thorne, T. L. Poepping, D. W. Holdsworth, and D. A. Steinman. Real-time virtual Doppler ultrasound. In: Proceedings of the SPIE, Medical Imaging: Ultrasonic Imaging and Signal Processing, vol. 5373, edited by W. F. Walker, and S. Y. Emelianov, 2004, pp. 373–384.Google Scholar
  18. 18.
    Krabill, K., H. Sung, and T. Tamura. Factors influencing the structure and shape of stenotic and regurgitant jets: an in vitro investigation using Doppler color flow mapping and optical flow visualization. J. Am. Coll. Cardiol. 13:1672–1681, 1989.PubMedCrossRefGoogle Scholar
  19. 19.
    Lancellotti, P., L. Moura, L. A. Pierard, B. A. Popescu, C. Tribouilloy, A. Hagendorff, A., et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur. J. Echocardiogr. 11(4):307–332, 2010.Google Scholar
  20. 20.
    Lang, R. M., L. P. Badano, W. Tsang, D. H. Adams, T. Buck, F. F. Faletra, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 25(1):3–46, 2012.PubMedCrossRefGoogle Scholar
  21. 21.
    Lavoie, P., G. Avallone, F. De Gregorio, G. P. Romano, and R. A. Antonia. Spatial resolution of PIV for the measurement of turbulence. Exp. Fluids 43(1):39–51, 2007.CrossRefGoogle Scholar
  22. 22.
    Lilly, D. K. A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A 4(3):633–635, 1992.CrossRefGoogle Scholar
  23. 23.
    Lund, T. The use of explicit filters in large eddy simulation. Comput. Math. Appl. 46:603–616, 2003.CrossRefGoogle Scholar
  24. 24.
    McCarthy, P. M. Three-dimensional echocardiography is not essential for intraoperative assessment of mitral regurgitation. Circulation 128(6):653–658, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Pissanetzky, S., and F. G. Basombrio. Efficient calculation of numerical values of a polyhedral function. Int. J. Numer. Meth. Eng. 17:231–237, 1981.CrossRefGoogle Scholar
  26. 26.
    Pope, S. B. Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000.CrossRefGoogle Scholar
  27. 27.
    Quaini, A., S. Canic, G. Guidoboni, R. Glowinski, S. R. Igo, C. J. Hartley, et al. A three-dimensional computational fluid dynamics model of regurgitant mitral valve flow: validation against in vitro standards and 3D color Doppler methods. Cardiovasc. Eng. Technol. 2(2):77–89, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Raffel, M., C. E. Willert, S. T. Wereley, and J. Kompenhans. Particle Image Velocimetry—a Practical Guide (2nd ed.). Berlin: Springer Verlag, 2007.Google Scholar
  29. 29.
    Saarenrinne, P., M. Piirto, and H. Eloranta. Experiences of turbulence measurement with PIV. Meas. Sci. Technol. 12(11):1904–1910, 2001.CrossRefGoogle Scholar
  30. 30.
    Schmitt, F. G. About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 335(9):617–627, 2007.CrossRefGoogle Scholar
  31. 31.
    Smagorinsky, J. General circulation experiments with the primitive equations, part I: the basic experiment. Month. Weather. Rev. 91:99–164, 1963.CrossRefGoogle Scholar
  32. 32.
    Srinivasa Rao, P. Modeling of turbulent flows and boundary layer. In: Computational Fluid Dynamics, edited by Hyoung Woo Oh. InTech, 2010.Google Scholar
  33. 33.
    Swillens, A., L. Lvstakken, J. Kips, H. Torp, and P. Segers. Ultrasound simulation of complex flow velocity fields based on computational fluid dynamics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(3):546–556, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Thomas, J., C. Liu, J. O’Shea, R. Davidoff, S. Mc-Glew, and A. Eeyman. How turbulent is a turbulent jet? An in vitro color flow Doppler study. J. Am. Coll. Cardiol. 13:22A, 1989.Google Scholar
  35. 35.
    Vermeulen, M., R. Kaminsky, B. Van Der Smissen, T. Claessens, P. Segers, P. Verdonck, and P. Van Ransbeeck. In vitro flow modelling for mitral valve leakage quantification. Presented at the PIV09, Melbourne, Australia, Aug. 2009.Google Scholar
  36. 36.
    Vichnevetsky, R., and J. B. Bowles. Fourier analysis of numerical approximations of hyperbolic equations (5th ed.). Philadelphia, USA: Siam, 1982.CrossRefGoogle Scholar
  37. 37.
    Wendling, F., S. A. Jones, and D. P. Giddens. Simulation of Doppler ultrasound signals for a laminar, pulsatile, nonuniform flow. Ultrasound Med. Biol. 18(2):179–193, 1992.PubMedCrossRefGoogle Scholar
  38. 38.
    Westerweel, J., G. E. Elsinga, and R. J. Adrian. Particle image velocimetry for complex and turbulent flows. Annu. Rev. Fluid Mech. 45:409–436, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Simon J. Sonntag
    • 1
  • Wei Li
    • 2
  • Michael Becker
    • 3
  • Wiebke Kaestner
    • 3
  • Martin R. Büsen
    • 1
  • Nikolaus Marx
    • 3
  • Dorit Merhof
    • 2
  • Ulrich Steinseifer
    • 1
  1. 1.Department of Cardiovascular Engineering, Institute of Applied Medical EngineeringRWTH Aachen University and University Hospital AachenAachenGermany
  2. 2.Institute of Imaging & Computer VisionRWTH Aachen UniversityAachenGermany
  3. 3.Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care MedicineUniversity Hospital AachenAachenGermany

Personalised recommendations