Advertisement

Annals of Biomedical Engineering

, Volume 42, Issue 5, pp 960–970 | Cite as

Design and Mechanical Properties of a Novel Cerebral Flow Diverter Stent

  • Jiayao Ma
  • Zhong You
  • James Byrne
  • Rafik R. Rizkallah
Article

Abstract

Brain arterial aneurysms are localised dilatation in the wall of cerebral arteries that are common among adult population and associated with high incidence of morbidity and mortality. Using flow diverter stent alone to treat cerebral aneurysm is recognized as a safe and effective method. However, flow diverter stents currently available have limitations due to their braided structures. In this paper a novel flow diverter stent is proposed. It is made out of nitinol tubes that provide adequate radial stiffness and tailored surface coverage to overcome problems of currently available braided stents while retaining low porosity and excellent longitudinal flexibility. Finite element analysis using Abaqus has been conducted to investigate radial stiffness, longitudinal flexibility, and maximum strain during packaging of a series of novel stent designs with varied geometric parameters. Results show that porosity below 70% can be achieved and provides radial stiffness and longitudinal flexibility comparable to those of the Neuroform stent that is commonly used for stent assisted coiling. The novel flow diverter has showed great potential for direct treatment of cerebral aneurysms.

Keywords

Cerebral aneurysm Flow diverter stent Finite element analysis Radial stiffness Longitudinal flexibility 

Notes

Acknowledgments

The authors would like to thank Wellcome Trust and EPSRC for their financial support under Grant Number WT 088877/Z/09Z.

References

  1. 1.
    Abaqus. Version 6.7 Edition. Providence, RI: SIMULIA Corp.Google Scholar
  2. 2.
    Augsburger, L., M. Farhat, P. Reymond, E. Fonck, Z. Kulcsar, N. Stergiopulos, and D. A. Rüfenacht. Effect of flow diverter porosity on intraaneurysmal blood flow. Clin. Neuroradiol. 19(3):204–214, 2009.CrossRefGoogle Scholar
  3. 3.
    Bederson, J. B., E. S. Connolly, H. H. Batjer, R. G. Dacey, J. E. Dion, M. N. Diringer, J. E. Duldner, R. E. Harbaugh, A. B. Patel, and R. H. Rosenwasser. Guidelines for the management of aneurysmal subarachnoid hemorrhage a statement for healthcare professionals from a special Writing Group of the Stroke Council, American Heart Association. Stroke 40(3):994–1025, 2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Brisman, J. L., J. K. Song, and D. W. Newell. Cerebral aneurysms. N. Engl. J. Med. 355:928–939, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Byrne, J. V., R. Beltechi, J. A. Yarnold, J. Birks, and M. Kamran. Early experience in the treatment of intra-cranial aneurysms by endovascular flow diversion: a multicentre prospective study. PLoS ONE 5(9):e12492, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Fiorella, D., F. C. Albuquerque, V. R. Deshmukh, H. H. Woo, P. A. Rasmussen, T. J. Masaryk, and C. G. McDougall. Endovascular reconstruction with the Neuroform stent as monotherapy for the treatment of uncoilable intradural pseudoaneurysms. Neurosurgery 59(2):291–300, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Linfante, I., and A. K. Wakhloo. Brain aneurysms and arteriovenous malformations advancements and emerging treatments in endovascular embolization. Stroke 38(4):1411–1417, 2007.PubMedCrossRefGoogle Scholar
  8. 8.
    Lubicz, B., L. Collignon, G. Raphaeli, J.-P. Pruvo, M. Bruneau, O. De Witte, and X. Leclerc. Flow-diverter stent for the endovascular treatment of intracranial aneurysms a prospective study in 29 patients with 34 aneurysms. Stroke 41(10):2247–2253, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Lubicz, B., X. Leclerc, M. Levivier, J. Brotchi, J.-P. Pruvo, J.-P. Lejeune, and D. Balériaux. Retractable self-expandable stent for endovascular treatment of wide-necked intracranial aneurysms: preliminary experience. Neurosurgery 58(3):451–457, 2006.PubMedCrossRefGoogle Scholar
  10. 10.
    Lylyk, P., C. Miranda, R. Ceratto, A. Ferrario, E. Scrivano, H. R. Luna, A. L. Berez, Q. Tran, P. K. Nelson, and D. Fiorella. Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device: the Buenos Aires experience. Neurosurgery 64(4):632–643, 2009.PubMedCrossRefGoogle Scholar
  11. 11.
    McKelvey, A., and R. Ritchie. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. J. Biomed. Mater. Res. 47(3):301–308, 1999.PubMedCrossRefGoogle Scholar
  12. 12.
    Pierot, L. Flow diverter stents in the treatment of intracranial aneurysms: where are we? J. Neuroradiol. 38(1):40–46, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Rebelo, N., X.-Y. Gong, A. Hall, A. R. Pelton, and T. W. Duerig. Finite element analysis on the cyclic properties of superelastic nitinol. In: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, 2006, pp. 157–163.Google Scholar
  14. 14.
    Strother, C. M. Electrothrombosis of saccular aneurysms via endovascular approach: part 1 and part 2. AJNR Am. J. Neuroradiol. 22(5):1011–1012, 2001.Google Scholar
  15. 15.
    Szikora, I., Z. Berentei, Z. Kulcsar, M. Marosfoi, Z. Vajda, W. Lee, A. Berez, and P. Nelson. Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the pipeline embolization device. AJNR Am. J. Neuroradiol. 31(6):1139–1147, 2010.PubMedCrossRefGoogle Scholar
  16. 16.
    Szikora, I., L. R. Guterman, K. M. Wells, and L. N. Hopkins. Combined use of stents and coils to treat experimental wide-necked carotid aneurysms: preliminary results. AJNR Am. J. Neuroradiol. 15(6):1091–1102, 1994.PubMedGoogle Scholar
  17. 17.
    Van Rooij, W., and M. Sluzewski. Endovascular treatment of large and giant aneurysms. AJNR Am. J. Neuroradiol. 30(1):12–18, 2009.PubMedCrossRefGoogle Scholar
  18. 18.
    Vernooij, M. W., M. A. Ikram, H. L. Tanghe, A. J. P. E. Vincent, A. Hofman, G. P. Krestin, W. J. Niessen, M. M. B. Breteler, and A. van der Lugt. Incidental findings on brain MRI in the general population. N. Engl. J. Med. 357(18):1821–1828, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Jiayao Ma
    • 1
  • Zhong You
    • 1
  • James Byrne
    • 2
  • Rafik R. Rizkallah
    • 2
  1. 1.Department of Engineering ScienceUniversity of OxfordOxfordUK
  2. 2.Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK

Personalised recommendations