Annals of Biomedical Engineering

, Volume 42, Issue 4, pp 899–914 | Cite as

Airflow and Particle Deposition Simulations in Health and Emphysema: From In Vivo to In Silico Animal Experiments

  • Jessica M. Oakes
  • Alison L. Marsden
  • Celine Grandmont
  • Shawn C. Shadden
  • Chantal Darquenne
  • Irene E. Vignon-ClementelEmail author


Image-based in silico modeling tools provide detailed velocity and particle deposition data. However, care must be taken when prescribing boundary conditions to model lung physiology in health or disease, such as in emphysema. In this study, the respiratory resistance and compliance were obtained by solving an inverse problem; a 0D global model based on healthy and emphysematous rat experimental data. Multi-scale CFD simulations were performed by solving the 3D Navier–Stokes equations in an MRI-derived rat geometry coupled to a 0D model. Particles with 0.95 μm diameter were tracked and their distribution in the lung was assessed. Seven 3D–0D simulations were performed: healthy, homogeneous, and five heterogeneous emphysema cases. Compliance (C) was significantly higher (p = 0.04) in the emphysematous rats (C = 0.37 ± 0.14 cm3/cmH2O) compared to the healthy rats (C = 0.25 ± 0.04 cm3/cmH2O), while the resistance remained unchanged (p = 0.83). There were increases in airflow, particle deposition in the 3D model, and particle delivery to the diseased regions for the heterogeneous cases compared to the homogeneous cases. The results highlight the importance of multi-scale numerical simulations to study airflow and particle distribution in healthy and diseased lungs. The effect of particle size and gravity were studied. Once available, these in silico predictions may be compared to experimental deposition data.


CFD Aerosol Multi-scale modeling Emphysema Experimental data Pulmonary mechanics Resistance Compliance Airways Rat 



The authors would like to thank Mahdi Esmaily Moghadam for his help with the multi-scale simulation framework. This work was supported by grant 1R21HL087805-02 from the NHLBI (NIH), National Science Foundation Graduate Fellowship (J. M. Oakes), Burroughs Wellcome Fund Travel Grant (J. M. Oakes), the Burroughs Wellcome Fund (A. L. Marsden), the ANR-08-JCJC-0013 grant (C. Grandmont), and associated team INRIA Grant.

Conflict of interest

The authors have no conflict of interest related to the work presented in this manuscript.


  1. 1.
    Agu, R. U. and M. I. Ugwoke. In vitro and in vivo testing methods for respiratory drug delivery. Expert Opin. Drug Deliv. 8:57–69, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Angivel, S. and B. Asgharian. A multiple-path model of particle deposition in the rat lung. Toxicol. Sci. 28(1):41–50, 1995.CrossRefGoogle Scholar
  3. 3.
    Baffico, L., C. Grandmont, and B. Maury. Multiscale modeling of the respiratory tract. Math. Models Methods Appl. Sci. 20(1):59–93, 2010.CrossRefGoogle Scholar
  4. 4.
    Bates, J. H. T. and B. Suki. Assessment of peripheral lung mechanics. Respir. Physiol. Neurobiol. 163(1–3):54–63, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bennett, W. D., K. L. Zeman, C. Kim, J. Mascarella, D. William, and L. Kirby. Enhanced deposition of fine particles in COPD patients spontaneously breathing at rest. Inhal. Toxicol. 9(1):1–14, 1997.CrossRefGoogle Scholar
  6. 6.
    Borzone, G., L. Liberona, P. Olmos, C. Sáez, M. Meneses, T. Reyes, R. Moreno, and C. Lisboa. Rat and hamster species differences in susceptibility to elastase-induced pulmonary emphysema relate to differences in elastase inhibitory capacity. Am. J. Phys. Reg. Int. Comput. Phys. 293(3):R1342–R1349, 2007.Google Scholar
  7. 7.
    Brand, P., M. Schulte, M. Wencker, C. H. Herpich, G. Klein, K. Hanna, and T. Meyer. Lung deposition of inhaled alpha1-proteinase inhibitor in cystic fibrosis and alpha1-antitrypsin deficiency. Eur. Respir. J. 34(2):354–360, 2009.CrossRefGoogle Scholar
  8. 8.
    Butler, J. P. and A. Tsuda. Logistic trajectory maps and aerosol mixing due to asynchronous flow at airway bifurcations. Respir. Physiol. Neurobiol. 148:195–206, 2005.PubMedCrossRefGoogle Scholar
  9. 9.
    Cai, F. and C. Yu. Inertial and interceptional deposition of spherical particles and fibers in a bifurcating airway. J. Aerosol. Sci. 19(6):679–688, 1988.CrossRefGoogle Scholar
  10. 10.
    Carr, I. A., N. Nemoto, R. S. Schwarz, and S. C. Shadden. Size dependent predilections of cardiogenic embolic transport. Am. J. Physiol. Heart Circ. Physiol. 305(5):H732–H739, 2013.Google Scholar
  11. 11.
    Choi, J., M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. On intra- and intersubject variabilities of airflow in the human lungs. Phys. Fluids 21(10):101901:1–101901:17, 2009.Google Scholar
  12. 12.
    Comer, J. K., C. Kleinstreuer, S. Hyun, and C. S. Kim. Aerosol transport and deposition in sequentially bifurcating airways. J. Biomech. Eng. 122(2):152–158, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Comerford, A., G. Bauer, W. A. Wall. Nanoparticle transport in a realistic model of the tracheobronchial region. Int. J. Numer. Method Biomed. Eng. 26:904–914, 2010.Google Scholar
  14. 14.
    Comerford, A., C. Förster, and W. A. Wall. Structured tree impedance outflow boundary conditions for 3D lung simulations. J. Biomech. Eng. 132(8):81002:1–81002:10, 2010.Google Scholar
  15. 15.
    Cotes, J. E., D. J. Chinn, and M. R. Miller. Lung Function: Physiology, Measurement and Application to Medicine, 6th Edition. Oxford: Blackwell Publishing, 2006Google Scholar
  16. 16.
    Darquenne, C., C. van Ertbruggen, G. K. Prisk. Convective flow dominates aerosol delivery to the lung segments. J. Appl. Physiol. 111(1):48–54, 2011.CrossRefGoogle Scholar
  17. 17.
    De Backer, J. W., W. G. Vos, C. D. Gorl, P. Germonpre, B. Partoens, F. L. Wuyts, P. M. Parizel, and W. De Backer. Flow analyses in the lower airways: patient-specific model and boundary conditions. Med. Eng. Phys. 30:872–879, 2008.CrossRefGoogle Scholar
  18. 18.
    de Rochefort, L., L. Vial, R. Fodil, X. Maître, B. Louis, D. Isabey, G. Caillibotte, M. Thiriet, J. Bittoun, E. Durand, and G. Sbirlea-Apiou. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry. J. Appl. Physiol. 102(5):2012–2023, 2007.Google Scholar
  19. 19.
    de Vasconcelos, T. F., B. Sapoval, J. S. Andrade, J. B. Grotberg, Y. Hu, and M. Filoche. Particle capture into the lung made simple? J. Appl. Physiol. 110(6):1664–1673, 2011.CrossRefGoogle Scholar
  20. 20.
    Diamond, L. and M. O’Donnell. Pulmonary mechanics in normal rats. J. Appl. Physiol. 43(6):942–948, 1977.Google Scholar
  21. 21.
    Emami, K., E. Chia, S. Kadlecek, J. P. Macduffie-Woodburn, J. Zhu, S. Pickup, A. Blum, M. Ishii, and R. R. Rizi. Regional correlation of emphysematous changes in lung function and structure: a comparison between pulmonary function testing and hyperpolarized MRI metrics. J. Appl. Physiol. 110(1):225–235, 2011.CrossRefGoogle Scholar
  22. 22.
    Esmaily Moghadam, M., Y. Bazilevs, and A. L. Marsden. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput. Mech. 52(5):1141–1152, 2013.Google Scholar
  23. 23.
    Esmaily Moghadam, M., Y. Bazilevs, T. -Y. Hsia, I. E. Vignon-Clementel, and A. L. Marsden. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48(3):277–291, 2011.CrossRefGoogle Scholar
  24. 24.
    Esmaily Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244:63–79, 2013.Google Scholar
  25. 25.
    Fetita, C., S. Mancini, D. Perchet, F. Prêteux, M. Thiriet, and L. Vial. An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees. Comput. Methods Biomech. Biomed. Eng. 8(4):279–293, 2005.Google Scholar
  26. 26.
    Gemci, T., V. Ponyavin, Y. Chen, H. Chen, and R. Collins. Computational model of airflow in upper 17 generations of human respiratory tract. J. Biomech. 41(9):2047–2054, 2008.PubMedCrossRefGoogle Scholar
  27. 27.
    Gravemeier, V., A. Comerford, L. Yoshihara, M. Ismail, and W. Wall. A novel formulation for Neumann inflow boundary conditions in biomechanics. Int. J. Numer. Methods Biomed. Eng. 28:560–573, 2012.CrossRefGoogle Scholar
  28. 28.
    Kuprat, A., S. Kabilan, J. Carson, R. Corley, and D. Einstein. A bidirectional coupling procedure applied to multiscale respiratory modeling. J. Comput. Phys. 244:148–167, 2013.CrossRefGoogle Scholar
  29. 29.
    Longest, P. W. and S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 29(3):350–366, 2007.CrossRefGoogle Scholar
  30. 30.
    Malve, M., S. Chandra, J. Lopez-Villalobos, E. Finol, A. Ginel, and M. Doblare. CFD analysis of the human airways under impedance-based boundary conditions: application to healthy, diseased and stented trachea. Comput. Methods Biomech. Biomed. Eng. 16(2):37–41, 2013.CrossRefGoogle Scholar
  31. 31.
    Maxey, M. R. and J. J. Riley. Equation of motion for a small rigid sphere in nonuniform flow. Phys. Fluids 26:883–889,1983.CrossRefGoogle Scholar
  32. 32.
    Minard, K. R., A. P. Kuprat, S. Kabilan, R. E. Jacob, D. R. Einstein, J. P. Carson, and R. A. Corley. Phase-contrast MRI and CFD modeling of apparent (3)He gas flow in rat pulmonary airways. J. Magn. Reson. 221:129–138, 2012.CrossRefGoogle Scholar
  33. 33.
    Monjezi, M., R. Dastanpour, M. Saidi, and R. Pishevar. Prediction of particle deposition in the respiratory track using 3D–1D modeling. Sci. Iran 19(6):1479–1486, 2012.CrossRefGoogle Scholar
  34. 34.
    Müller, J., O. Sahni, X. Li, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Anisotropic adaptive finite element method for modelling blood flow. Comput. Methods Biomech. Biomed. Eng. 8(5):295–305, 2005.CrossRefGoogle Scholar
  35. 35.
    Nowak, N., P. P. Kakade, and A. V. Annapragada. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31(4):374–390, 2003.CrossRefGoogle Scholar
  36. 36.
    Oakes, J. M., S. Day, S. J. Weinstein, and R. J. Robinson. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry. J. Biomech. Eng. 132(2):21008:1–21008:9, 2010.Google Scholar
  37. 37.
    Oakes, J. M., M. Scadeng, E. C. Breen, A. L. Marsden, and C. Darquenne. Rat airway morphometry measured from in-situ mri-based geometric models. J. Appl. Physiol. 112(12):1921–1931, 2012.CrossRefGoogle Scholar
  38. 38.
    Oakes, J. M., M. Scadeng, E. C. Breen, G. K. Prisk, and C. Darquenne. Regional distribution of aerosol deposition in rat lungs using magnetic resonance imaging. Ann. Biomed. Eng. 41:967–978, 2013.CrossRefGoogle Scholar
  39. 39.
    Oakes, J. M., E. Breen, M. Scadeng, G. S. Tchantchou, and C. Darquenne. MRI-based measurements of aerosol deposition in the lung of healthy and elastase-treated rats. (submitted).Google Scholar
  40. 40.
    Pich, J. Theory of gravitational deposition of particles from laminar flows in channels. J. Aerosol Sci. 3(5):351–361, 1972.CrossRefGoogle Scholar
  41. 41.
    Raabe, O. G., H. C. Yeh, G. J. Newton, R. F. Phalen, and D. J. Velasquez. Deposition of inhaled monodisperse aerosols in small rodents. Inhaled Part. 4(1):3–21, 1975.Google Scholar
  42. 42.
    Rubini A., E. L. Carniel, A. Parmagnani,and A. N. Natali. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation. Lung 189(6):511–8, 2011.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmidt, J. P., S. L. Delp, M. A. Sherman, C. A. Taylor, V. S. Pande, and R. B. Altman. NIH Public Access. In: Proceedings of the IEEE, Special issue on Computational System Biology. Vol. 96(8), pp. 1266–1280, 2008.Google Scholar
  44. 44.
    Segal, R. A., T. B. Martonen, C. S. Kim, and M. Shearer. Computer simulations of particle deposition in the lungs of chronic obstructive pulmonary disease patients. Inhal.Toxicol. 14:705–720, 2002.PubMedCrossRefGoogle Scholar
  45. 45.
    Shadden, S. C. FlowVC (V. 1) [Computer Software]. Accessed September 2011.
  46. 46.
    Soni, B. and D. Thompson. Effects of temporally varying inlet conditions on flow and particle deposition in the small bronchial tubes. Int. J. Numer. Method Biomed. Eng. 28:915–936, 2012.CrossRefGoogle Scholar
  47. 47.
    Sturm, R. and W. Hofmann. Stochastic simulation of alveolar particle deposition in lungs affected by different types of emphysema. J. Aerosol Med. 17:357–372, 2004.PubMedCrossRefGoogle Scholar
  48. 48.
    Sweeney, T. D., J. D. Brain, S. A. Leavitt, and J. J. Godleski. Emphysema alters the deposition pattern of inhaled particles in hamsters. Am. J. Pathol. 128(1):19–28, 1987.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Tolnai, J., M. V. Szabari, G. Albu, B. A. Maár, H. Parameswaran, E. Bartolák-Suki, B. Suki, and Z. Hantos. Functional and morphological assessment of early impairment of airway function in a rat model of emphysema. J. Appl. Physiol. 112(11):1932–1939, 2012.CrossRefGoogle Scholar
  50. 50.
    Troianowski, G., C. A. Taylor, J. A. Feinstein, and I. E. Vignon-Clementel. Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J. Biomech. Eng. 133 (11):111006, 2011.PubMedGoogle Scholar
  51. 51.
    Walters, D. K., and W. H. Luke. Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models. J. Biomech. Eng. 133(1):011003:1–011003:8, 2011.Google Scholar
  52. 52.
    Wichers, L. B., W. H. Rowan, J. P. Nolan, A. D. Ledbetter, J. K. McGee, D. L. Costa, and W. P. Watkinson. Particle deposition in spontaneously hypertensive rats exposed via whole-body inhalation: measured and estimated dose. Toxicol. Sci. 93(2):400–10, 2006.PubMedCrossRefGoogle Scholar
  53. 53.
    Wongviriyawong, C., R. S. Harris, E. Greenblatt, T. Winkler, and J. G. Venegas. Peripheral resistance: a link between global airflow obstruction and regional ventilation distribution. J. Appl. Physiol. 114:504-514, 2013.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Jessica M. Oakes
    • 1
  • Alison L. Marsden
    • 1
  • Celine Grandmont
    • 2
    • 3
  • Shawn C. Shadden
    • 4
  • Chantal Darquenne
    • 5
  • Irene E. Vignon-Clementel
    • 2
    • 3
    Email author
  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of California, San DiegoLa JollaUSA
  2. 2.REOINRIA Paris-RocquencourtLe Chesnay CedexFrance
  3. 3.UPMC Universite Paris 6, Laboratoire Jacques-Louis LionsParisFrance
  4. 4.Department of Mechanical EngineeringUniversity of California, BerkeleyBerkeleyUSA
  5. 5.Division of Physiology, Department of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations