Annals of Biomedical Engineering

, Volume 42, Issue 2, pp 352–367 | Cite as

Engineering Three-Dimensional Stem Cell Morphogenesis for the Development of Tissue Models and Scalable Regenerative Therapeutics

  • Melissa A. Kinney
  • Tracy A. Hookway
  • Yun Wang
  • Todd C. McDevitt


The physiochemical stem cell microenvironment regulates the delicate balance between self-renewal and differentiation. The three-dimensional assembly of stem cells facilitates cellular interactions that promote morphogenesis, analogous to the multicellular, heterotypic tissue organization that accompanies embryogenesis. Therefore, expansion and differentiation of stem cells as multicellular aggregates provides a controlled platform for studying the biological and engineering principles underlying spatiotemporal morphogenesis and tissue patterning. Moreover, three-dimensional stem cell cultures are amenable to translational screening applications and therapies, which underscores the broad utility of scalable suspension cultures across laboratory and clinical scales. In this review, we discuss stem cell morphogenesis in the context of fundamental biophysical principles, including the three-dimensional modulation of adhesions, mechanics, and molecular transport and highlight the opportunities to employ stem cell spheroids for tissue modeling, bioprocessing, and regenerative therapies.


Stem cells Organoid Intercellular adhesions Biophysical Molecular transport Regenerative medicine Tissue engineering 



The authors are supported by funding from the National Institute of Health (NIH) (EB010061, GM088291, AR062006) and National Science Foundation (NSF) (CBET 0939511). M.A.K. is currently supported by an American Heart Association (AHA) Pre-Doctoral Fellowship and previously by an NSF Graduate Research Fellowship.


  1. 1.
    Aegerter-Wilmsen, T., C. M. Aegerter, E. Hafen, and K. Basler. Model for the regulation of size in the wing imaginal disc of drosophila. Mech. Dev. 124:318–326, 2007.PubMedGoogle Scholar
  2. 2.
    Allen, J. W., S. R. Khetani, and S. N. Bhatia. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol. Sci. 84:110–119, 2005.PubMedGoogle Scholar
  3. 3.
    Amado, L. C., et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl Acad. Sci. U. S. A. 102:11474–11479, 2005.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Antonica, F., et al. Generation of functional thyroid from embryonic stem cells. Nature 491:66–71, 2012.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Baker, B. M., and C. S. Chen. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125:3015–3024, 2012.PubMedGoogle Scholar
  6. 6.
    Bao, B., J. Jiang, T. Yanase, Y. Nishi, and J. R. Morgan. Connexon-mediated cell adhesion drives microtissue self-assembly. FASEB J. 25:255–264, 2011.PubMedGoogle Scholar
  7. 7.
    Baraniak, P. R., and T. C. Mcdevitt. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res. 347:701–711, 2012.PubMedGoogle Scholar
  8. 8.
    Bartosh, T. J., Z. Wang, A. A. Rosales, S. D. Dimitrijevich, and R. S. Roque. 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J. Cell. Biochem. 105:612–623, 2008.PubMedGoogle Scholar
  9. 9.
    Bauer, M., et al. Adult cardiac progenitor cell aggregates exhibit survival benefit both in vitro and in vivo. PLoS ONE 7:e50491, 2012.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Bauwens, C., T. Yin, S. Dang, R. Peerani, and P. W. Zandstra. Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol. Bioeng. 90:452–461, 2005.PubMedGoogle Scholar
  11. 11.
    Bauwens, C. L., et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310, 2008.PubMedGoogle Scholar
  12. 12.
    Bauwens, C. L., et al. Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Eng. Part A 17:1901–1909, 2011.PubMedGoogle Scholar
  13. 13.
    Bencherif, S. A., et al. Injectable preformed scaffolds with shape-memory properties. Proc. Natl Acad. Sci. U. S. A. 109:19590–19595, 2012.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Bez, A., et al. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res. 993:18–29, 2003.PubMedGoogle Scholar
  15. 15.
    Bratt-Leal, A. M., R. L. Carpenedo, M. D. Ungrin, P. W. Zandstra, and T. C. Mcdevitt. Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials 32:48–56, 2011.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Bratt-Leal, A. M., K. L. Kepple, R. L. Carpenedo, M. T. Cooke, and T. C. Mcdevitt. Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates. Integr. Biol. 3:1224–1232, 2011.Google Scholar
  17. 17.
    Bratt-Leal, A. M., A. H. Nguyen, K. A. Hammersmith, A. Singh, and T. C. Mcdevitt. A microparticle approach to morphogen delivery within pluripotent stem cell aggregates. Biomaterials 34:7227–7235, 2013.PubMedGoogle Scholar
  18. 18.
    Burdsal, C. A., C. H. Damsky, and R. A. Pedersen. The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak. Development 118:829–844, 1993.PubMedGoogle Scholar
  19. 19.
    Burridge, P., D. Anderson, H. Priddle, and M. Barbadillo. Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25(4):929–938, 2007.PubMedGoogle Scholar
  20. 20.
    Cameron, C. M., W.-S. Hu, and D. S. Kaufman. Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol. Bioeng. 94:938–948, 2006.PubMedGoogle Scholar
  21. 21.
    Carpenedo, R. L., S. A. Seaman, and T. C. Mcdevitt. Microsphere size effects on embryoid body incorporation and embryonic stem cell differentiation. J. Biomed. Mater. Res., Part A 94:466–475, 2010.Google Scholar
  22. 22.
    Carpenedo, R. L., et al. Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials 30:2507–2515, 2009.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Carrier, R. L., et al. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 8:175–188, 2002.PubMedGoogle Scholar
  24. 24.
    Chambers, S. M., et al. Highly efficient neural conversion of human ES and ips cells by dual inhibition of smad signaling. Nat. Biotechnol. 27:275–280, 2009.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Chan, D. N., S. F. Azghadi, J. Feng, and W. E. Lowry. Ptk7 marks the first human developmental emt in vitro. PLoS ONE 7:e50432, 2012.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Chen, X., and S. L. Thibeault. Cell–cell interaction between vocal fold fibroblasts and bone marrow mesenchymal stromal cells in three-dimensional hyaluronan hydrogel. J. Tissue Eng. Regen. Med., 2013. DOI:  10.1002/term.1757.
  27. 27.
    Chen, T., et al. E-cadherin-mediated cell–cell contact is critical for induced pluripotent stem cell generation. Stem Cells 28:1315–1325, 2010.PubMedGoogle Scholar
  28. 28.
    Choi, J., et al. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. Biomaterials 32:7013–7022, 2011.PubMedGoogle Scholar
  29. 29.
    Chung, H. J., and T. G. Park. Injectable cellular aggregates prepared from biodegradable porous microspheres for adipose tissue engineering. Tissue Eng. Part A 15:1391–1400, 2009.PubMedGoogle Scholar
  30. 30.
    Cimetta, E., et al. Microfluidic device generating stable concentration gradients for long term cell culture: application to wnt3a regulation of β-catenin signaling. Lab Chip 10:3277–3283, 2010.PubMedGoogle Scholar
  31. 31.
    Ciruna, B., and J. Rossant. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1:37–49, 2001.PubMedGoogle Scholar
  32. 32.
    Constantinescu, D., H. L. Gray, P. J. Sammak, G. P. Schatten, and A. B. Csoka. Lamin a/c expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–185, 2006.PubMedGoogle Scholar
  33. 33.
    Cormier, J. T., N. I. Zur Nieden, D. E. Rancourt, and M. S. Kallos. Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors. Tissue Eng. 12:3233–3245, 2006.PubMedGoogle Scholar
  34. 34.
    Cox, T. R., and J. T. Erler. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Models Mech. 4:165–178, 2011.Google Scholar
  35. 35.
    Csaszar, E., et al. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10:218–229, 2012.PubMedGoogle Scholar
  36. 36.
    Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294:1708–1712, 2001.PubMedGoogle Scholar
  37. 37.
    Dahl, K. N., A. J. S. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102:1307–1318, 2008.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Daley, W. P., J. M. Kohn, and M. Larsen. A focal adhesion protein-based mechanochemical checkpoint regulates cleft progression during branching morphogenesis. Dev. Dyn. 240:2069–2083, 2011.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Daley, W. P., S. B. Peters, and M. Larsen. Extracellular matrix dynamics in development and regenerative medicine. J. Cell Sci. 121:255–264, 2008.PubMedGoogle Scholar
  40. 40.
    Dang, S. M., S. Gerecht-Nir, J. Chen, J. Itskovitz-Eldor, and P. W. Zandstra. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22:275–282, 2004.PubMedGoogle Scholar
  41. 41.
    Davey, R. E., and P. W. Zandstra. Spatial organization of embryonic stem cell responsiveness to autocrine gp130 ligands reveals an autoregulatory stem cell niche. Stem Cells 24:2538–2548, 2006.PubMedGoogle Scholar
  42. 42.
    Desroches, B. R., et al. Functional scaffold-free 3-D cardiac microtissues: a novel model for the investigation of heart cells. Am. J. Physiol. Heart Circ. Physiol. 302:H2031–H2042, 2012.PubMedGoogle Scholar
  43. 43.
    Doetschman, T. C., H. Eistetter, M. Katz, W. Schmidt, and R. Kemler. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87:27–45, 1985.PubMedGoogle Scholar
  44. 44.
    Dufort, C. C., M. J. Paszek, and V. M. Weaver. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12:308–319, 2011.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Eckermann, C. W., K. Lehle, S. A. Schmid, D. N. Wheatley, and L. A. Kunz-Schughart. Characterization and modulation of fibroblast/endothelial cell co-cultures for the in vitro preformation of three-dimensional tubular networks. Cell Biol. Int. 35:1097–1110, 2011.PubMedGoogle Scholar
  46. 46.
    Eiraku, M., et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56, 2011.PubMedGoogle Scholar
  47. 47.
    Eldar, A., et al. Robustness of the BMP morphogen gradient in drosophila embryonic patterning. Nature 419:304–308, 2002.PubMedGoogle Scholar
  48. 48.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.PubMedGoogle Scholar
  49. 49.
    Engler, A., et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J . 86:617–628, 2004.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Ewald, A. J., A. Brenot, M. Duong, B. S. Chan, and Z. Werb. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14:570–581, 2008.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Farhadifar, R., J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher. The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17:2095–2104, 2007.PubMedGoogle Scholar
  52. 52.
    Fletcher, D. A., and R. D. Mullins. Cell mechanics and the cytoskeleton. Nature 463:485–492, 2010.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Fok, E. Y. L., and P. W. Zandstra. Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 23:1333–1342, 2005.PubMedGoogle Scholar
  54. 54.
    Franke, J. D., R. A. Montague, and D. P. Kiehart. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr. Biol. 15:2208–2221, 2005.PubMedGoogle Scholar
  55. 55.
    Fridley, K. M., M. A. Kinney, and T. C. Mcdevitt. Hydrodynamic modulation of pluripotent stem cells. Stem Cell Res. Ther. 3:45, 2012.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Friedl, P., and D. Gilmour. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10:445–457, 2009.PubMedGoogle Scholar
  57. 57.
    Frith, J. E., B. Thomson, and P. G. Genever. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng. C Methods 16:735–749, 2010.Google Scholar
  58. 58.
    Fu, J., et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–736, 2010.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Fung, W.-T., A. Beyzavi, P. Abgrall, N.-T. Nguyen, and H.-Y. Li. Microfluidic platform for controlling the differentiation of embryoid bodies. Lab Chip 9:2591–2595, 2009.PubMedGoogle Scholar
  60. 60.
    Gallego-Perez, D., et al. High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform. Lab Chip 10:775–782, 2010.PubMedGoogle Scholar
  61. 61.
    Gardner, R. L., and J. Rossant. Investigation of the fate of 4-5 day post-coitum mouse inner cell mass cells by blastocyst injection. J. Embryol. Exp. Morphol. 52:141–152, 1979.PubMedGoogle Scholar
  62. 62.
    Go, M. J., D. S. Eastman, and S. Artavanis-Tsakonas. Cell proliferation control by notch signaling in drosophila development. Development 125:2031–2040, 1998.PubMedGoogle Scholar
  63. 63.
    Goh, S.-K., P. Olsen, and I. Banerjee. Extracellular matrix aggregates from differentiating embryoid bodies as a scaffold to support ESC proliferation and differentiation. PLoS ONE 8:e61856, 2013.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Gomez, E. W., Q. K. Chen, N. Gjorevski, and C. M. Nelson. Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J. Cell. Biochem. 110:44–51, 2010.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Grskovic, M., A. Javaherian, B. Strulovici, and G. Q. Daley. Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat. Rev. Drug Discov. 10:915–929, 2011.PubMedGoogle Scholar
  66. 66.
    Gupta, P., et al. Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood 92:4641–4651, 1998.PubMedGoogle Scholar
  67. 67.
    Haider, K. H., and M. Ashraf. Preconditioning approach in stem cell therapy for the treatment of infarcted heart. Prog. Mol. Biol. Transl. Sci. 111:323–356, 2012.PubMedGoogle Scholar
  68. 68.
    Heng, B. C., C. M. Cowan, and S. Basu. Comparison of enzymatic and non-enzymatic means of dissociating adherent monolayers of mesenchymal stem cells. Biol. Proced. Online 11:161–169, 2009.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Hong, S.-H., T. Werbowetski-Ogilvie, V. Ramos-Mejia, J. B. Lee, and M. Bhatia. Multiparameter comparisons of embryoid body differentiation toward human stem cell applications. Stem Cell Res 5:120–130, 2010.PubMedGoogle Scholar
  70. 70.
    Hongisto, H., et al. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res 8:97–108, 2012.PubMedGoogle Scholar
  71. 71.
    Hsiao, A. Y., et al. 384 hanging drop arrays give excellent z-factors and allow versatile formation of co-culture spheroids. Biotechnol. Bioeng. 109:1293–1304, 2012.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Hu, X., et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg. 135:799–808, 2008.PubMedGoogle Scholar
  73. 73.
    Huang, R. Y.-J., P. Guilford, and J. P. Thiery. Early events in cell adhesion and polarity during epithelial–mesenchymal transition. J. Cell Sci. 125:4417–4422, 2012.PubMedGoogle Scholar
  74. 74.
    Huang, N. F., and S. Li. Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine. Ann. Biomed. Eng. 39:1201–1214, 2011.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Hufnagel, L., A. A. Teleman, H. Rouault, S. M. Cohen, and B. I. Shraiman. On the mechanism of wing size determination in fly development. Proc. Natl Acad. Sci. U. S. A. 104:3835–3840, 2007.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Hwang, Y.-S., et al. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl Acad. Sci. U. S. A. 106:16978–16983, 2009.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326:1216–1219, 2009.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Ingber, D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59:575–599, 1997.PubMedGoogle Scholar
  79. 79.
    Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20:811–827, 2006.PubMedGoogle Scholar
  80. 80.
    Jackson, S. A., J. Schiesser, E. G. Stanley, and A. G. Elefanty. Differentiating embryonic stem cells pass through ‘temporal windows’ that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS ONE 5:e10706, 2010.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Kamiya, D., et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 470:503–509, 2011.PubMedGoogle Scholar
  82. 82.
    Keller, R., L. A. Davidson, and D. R. Shook. How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205, 2003.PubMedGoogle Scholar
  83. 83.
    Kelm, J. M., et al. A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J. Biotechnol. 148:46–55, 2010.PubMedGoogle Scholar
  84. 84.
    Kim, H. Y., and L. A. Davidson. Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway. J. Cell Sci. 124:635–646, 2011.PubMedGoogle Scholar
  85. 85.
    Kim, L., M. D. Vahey, H.-Y. Lee, and J. Voldman. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 6:394–406, 2006.PubMedGoogle Scholar
  86. 86.
    Kim, J. M., et al. Assessment of differentiation aspects by the morphological classification of embryoid bodies derived from human embryonic stem cells. Stem Cells Dev. 20:1925–1935, 2011.PubMedGoogle Scholar
  87. 87.
    Kingsmore, S. F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 5:310–320, 2006.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Kinney, M. A., R. Saeed, and T. C. Mcdevitt. Systematic analysis of embryonic stem cell differentiation in hydrodynamic environments with controlled embryoid body size. Integr. Biol. 4:641–650, 2012.Google Scholar
  89. 89.
    Kinney, M. A., C. Y. Sargent, and T. C. Mcdevitt. The multiparametric effects of hydrodynamic environments on stem cell culture. Tissue Eng. B Rev. 17:249–262, 2011.Google Scholar
  90. 90.
    Kinney, M. A., C. Y. Sargent, and T. C. Mcdevitt. Temporal modulation of β-catenin signaling by multicellular aggregation kinetics impacts embryonic stem cell cardiomyogenesis. Stem Cells Dev. 22(19):2665–2677, 2013.PubMedGoogle Scholar
  91. 91.
    Kirouac, D. C., et al. Cell–cell interaction networks regulate blood stem and progenitor cell fate. Mol. Syst. Biol. 5:293, 2009.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Knospe, W. H., S. A. Gregory, S. G. Husseini, W. Fried, and F. E. Trobaugh. Origin and recovery of colony-forming units in locally curetted bone marrow of mice. Blood 39:331–340, 1972.PubMedGoogle Scholar
  93. 93.
    Kumachev, A., et al. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 32:1477–1483, 2011.PubMedGoogle Scholar
  94. 94.
    Kurosawa, H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J. Biosci. Bioeng. 103:389–398, 2007.PubMedGoogle Scholar
  95. 95.
    Laflamme, M. A., et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25:1015–1024, 2007.PubMedGoogle Scholar
  96. 96.
    Lammerding, J., et al. Lamin a/c deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113:370–378, 2004.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature 501:373–379, 2013.PubMedGoogle Scholar
  98. 98.
    Larue, L., et al. A role for cadherins in tissue formation. Development 122:3185–3194, 1996.PubMedGoogle Scholar
  99. 99.
    Le Blanc, K., et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase ii study. Lancet 371:1579–1586, 2008.PubMedGoogle Scholar
  100. 100.
    Lee, W.-Y., et al. The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials 30:5505–5513, 2009.PubMedGoogle Scholar
  101. 101.
    Lee, W.-Y., et al. Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ecm. Biomaterials 32:5558–5567, 2011.PubMedGoogle Scholar
  102. 102.
    Li, L., and W. B. Neaves. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66:4553–4557, 2006.PubMedGoogle Scholar
  103. 103.
    Li, T.-S., et al. Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28:2088–2098, 2010.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Lian, X., et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8:162–175, 2013.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Liu, Z., et al. Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl Acad. Sci. U. S. A. 107:9944–9949, 2010.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Maniscalco, W. M., and M. H. Campbell. Transforming growth factor-beta induces a chondroitin sulfate/dermatan sulfate proteoglycan in alveolar type ii cells. Am. J. Physiol. 266:L672–L680, 1994.PubMedGoogle Scholar
  107. 107.
    Manning, M. L., R. A. Foty, M. S. Steinberg, and E.-M. Schoetz. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl Acad. Sci. U. S. A. 107:12517–12522, 2010.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Matthews, B. D., D. R. Overby, R. Mannix, and D. E. Ingber. Cellular adaptation to mechanical stress: role of integrins, rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119:508–518, 2006.PubMedGoogle Scholar
  109. 109.
    Mcbeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.PubMedGoogle Scholar
  110. 110.
    Mohr, J. C., et al. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials 31:1885–1893, 2010.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Morrison, S. J., and A. C. Spradling. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611, 2008.PubMedGoogle Scholar
  112. 112.
    Mummery, C. L., et al. Visceral-endoderm-like cell lines induce differentiation of murine p19 embryonal carcinoma cells. Differentiation 46:51–60, 1991.PubMedGoogle Scholar
  113. 113.
    Nair, R., A. V. Ngangan, M. L. Kemp, and T. C. Mcdevitt. Gene expression signatures of extracellular matrix and growth factors during embryonic stem cell differentiation. PLoS ONE 7:e42580, 2012.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Nair, R., S. Shukla, and T. C. Mcdevitt. Acellular matrices derived from differentiating embryonic stem cells. J. Biomed. Mater. Res A 87:1075–1085, 2008.PubMedGoogle Scholar
  115. 115.
    Nakano, T., et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785, 2012.PubMedGoogle Scholar
  116. 116.
    Nelson, C. M., et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. U. S. A. 102:11594–11599, 2005.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Niebruegge, S., et al. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol. Bioeng. 102:493–507, 2009.PubMedGoogle Scholar
  118. 118.
    Ong, S.-M., et al. A gel-free 3D microfluidic cell culture system. Biomaterials 29:3237–3244, 2008.PubMedGoogle Scholar
  119. 119.
    Orlichenko, L. S., and D. C. Radisky. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin. Exp. Metastasis 25:593–600, 2008.PubMedGoogle Scholar
  120. 120.
    Page-Mccaw, A., A. J. Ewald, and Z. Werb. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8:221–233, 2007.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Parker, T., Z. Upton, and D. Leavesley. Vitronectin modulates human mesenchymal stem cell response to insulin-like growth factor-i and transforming growth factor beta 1 in a serum-free environment. Tissue Eng. Part A 15:1415–1426, 2009.PubMedGoogle Scholar
  122. 122.
    Paszek, M. J., D. Boettiger, V. M. Weaver, and D. A. Hammer. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput. Biol. 5:e1000604, 2009.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Purpura, K. A., A. M. Bratt-Leal, K. A. Hammersmith, T. C. Mcdevitt, and P. W. Zandstra. Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials 33:1271–1280, 2012.PubMedGoogle Scholar
  124. 124.
    Radisic, M., et al. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93:332–343, 2006.PubMedGoogle Scholar
  125. 125.
    Rago, A. P., D. M. Dean, and J. R. Morgan. Controlling cell position in complex heterotypic 3D microtissues by tissue fusion. Biotechnol. Bioeng. 102:1231–1241, 2009.PubMedGoogle Scholar
  126. 126.
    Rebustini, I. T., et al. Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences fgfr expression through beta1 integrin signaling. Dev. Biol. 308:15–29, 2007.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Ruiz, S. A., and C. S. Chen. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26:2921–2927, 2008.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Sachlos, E., and D. T. Auguste. Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29:4471–4480, 2008.PubMedGoogle Scholar
  129. 129.
    Saha, K., and R. Jaenisch. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:584–595, 2009.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Sahai, E., and C. J. Marshall. Rock and Dia have opposing effects on adherens junctions downstream of rho. Nat. Cell Biol. 4:408–415, 2002.PubMedGoogle Scholar
  131. 131.
    Saleh, F. A., J. E. Frith, J. A. Lee, and P. G. Genever. Three-dimensional in vitro culture techniques for mesenchymal stem cells. Methods Mol. Biol. 916:31–45, 2012.PubMedGoogle Scholar
  132. 132.
    Sargent, C. Y., G. Y. Berguig, and T. C. Mcdevitt. Cardiomyogenic differentiation of embryoid bodies is promoted by rotary orbital suspension culture. Tissue Eng. Part A 15:331–342, 2009.PubMedGoogle Scholar
  133. 133.
    Sargent, C. Y., et al. Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture. Biotechnol. Bioeng. 105:611–626, 2010.PubMedGoogle Scholar
  134. 134.
    Sasai, Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12:520–530, 2013.PubMedGoogle Scholar
  135. 135.
    Sasaki, D., et al. Mass preparation of size-controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method. Biomaterials 30:4384–4389, 2009.PubMedGoogle Scholar
  136. 136.
    Sauer, H., et al. Characteristics of calcium sparks in cardiomyocytes derived from embryonic stem cells. Am. J. Physiol. Heart Circ. Physiol. 281:H411–H421, 2001.PubMedGoogle Scholar
  137. 137.
    Scadden, D. T. The stem-cell niche as an entity of action. Nature 441:1075–1079, 2006.PubMedGoogle Scholar
  138. 138.
    Schroeder, M., et al. Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol. Bioeng. 92:920–933, 2005.PubMedGoogle Scholar
  139. 139.
    Selimović, S., et al. Microfabricated polyester conical microwells for cell culture applications. Lab Chip 11:2325–2332, 2011.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Shen, F. H., et al. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation. Spine J. 13:32–43, 2013.PubMedGoogle Scholar
  141. 141.
    Shimozono, S., T. Iimura, T. Kitaguchi, S.-I. Higashijima, and A. Miyawaki. Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496:363–366, 2013.PubMedGoogle Scholar
  142. 142.
    Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. U. S. A. 102:3318–3323, 2005.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Shukla, S., et al. Synthesis and organization of hyaluronan and versican by embryonic stem cells undergoing embryoid body differentiation. J. Histochem. Cytochem. 58:345–358, 2010.PubMedGoogle Scholar
  144. 144.
    Sims, J. R., S. Karp, and D. E. Ingber. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J. Cell Sci. 103(Pt 4):1215–1222, 1992.PubMedGoogle Scholar
  145. 145.
    Singh, A., et al. Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nat. Methods 10:438–444, 2013.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Si-Tayeb, K., et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305, 2010.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Son, M.-Y., H.-J. Kim, M.-J. Kim, and Y. S. Cho. Physical passaging of embryoid bodies generated from human pluripotent stem cells. PLoS ONE 6:e19134, 2011.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Son, Y. S., et al. Brief report: L1 cell adhesion molecule, a novel surface molecule of human embryonic stem cells, is essential for self-renewal and pluripotency. Stem Cells 29:2094–2099, 2011.PubMedGoogle Scholar
  149. 149.
    Spence, J. R., et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109, 2011.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Stankovich, B. L., E. Aguayo, F. Barragan, A. Sharma, and M. G. Pallavicini. Differential adhesion molecule expression during murine embryonic stem cell commitment to the hematopoietic and endothelial lineages. PLoS ONE 6:e23810, 2011.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Suga, H., et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62, 2011.PubMedGoogle Scholar
  152. 152.
    Suri, S., S. Ankur, A. H. Nguyen, A. M. Bratt-Leal, T. C. Mcdevitt, and H. Lu. Microfluidic patterning of embryonic multicellular aggregates for in vitro development studies. Lab Chip 13(23):4617–4624, 2013.PubMedGoogle Scholar
  153. 153.
    Symes, K., E. M. Smith, M. Mitsi, and M. A. Nugent. Sweet cues: how heparan sulfate modification of fibronectin enables growth factor guided migration of embryonic cells. Cell Adh Migr. 4:507–510, 2010.PubMedGoogle Scholar
  154. 154.
    Takebe, T., et al. Vascularized and functional human liver from an ipsc-derived organ bud transplant. Nature 499:481–484, 2013.PubMedGoogle Scholar
  155. 155.
    Talukdar, S., Q. T. Nguyen, A. C. Chen, R. L. Sah, and S. C. Kundu. Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials 32:8927–8937, 2011.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Taylor, G., M. S. Lehrer, P. J. Jensen, T. T. Sun, and R. M. Lavker. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102:451–461, 2000.PubMedGoogle Scholar
  157. 157.
    Ten Berge, D., et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3:508–518, 2008.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Toole, B. P., A. Zoltan-Jones, S. Misra, and S. Ghatak. Hyaluronan: a critical component of epithelial-mesenchymal and epithelial-carcinoma transitions. Cells Tissues Organs 179:66–72, 2005.PubMedGoogle Scholar
  159. 159.
    Trappmann, B., et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11:642–649, 2012.PubMedGoogle Scholar
  160. 160.
    Tremoleda, J. L., et al. Assessment of a preclinical model for studying the survival and engraftment of human stem cell derived osteogenic cell populations following orthotopic implantation. J. Musculoskelet. Neuronal Interact. 12:241–253, 2012.PubMedGoogle Scholar
  161. 161.
    Tse, H.-F., et al. Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. Eur. J. Heart Fail. 9:747–753, 2007.PubMedGoogle Scholar
  162. 162.
    Ueno, S., et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl Acad. Sci. U. S. A. 104:9685–9690, 2007.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Ungrin, M. D., C. Joshi, A. Nica, C. Bauwens, and P. W. Zandstra. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE 3:e1565, 2008.PubMedCentralPubMedGoogle Scholar
  164. 164.
    Ungrin, M. D., et al. Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics. Biotechnol. Bioeng. 109:853–866, 2012.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Van Winkle, A. P., I. D. Gates, and M. S. Kallos. Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation. Cells Tissues Organs 196:34–47, 2012.PubMedGoogle Scholar
  166. 166.
    Vinci, M., et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10:29, 2012.PubMedCentralPubMedGoogle Scholar
  167. 167.
    Von Dassow, M., J. A. Strother, and L. A. Davidson. Surprisingly simple mechanical behavior of a complex embryonic tissue. PLoS ONE 5:e15359, 2010.Google Scholar
  168. 168.
    Wan, C.-R., S. Chung, and R. D. Kamm. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann. Biomed. Eng. 39:1840–1847, 2011.PubMedGoogle Scholar
  169. 169.
    Wang, X., R. E. Harris, L. J. Bayston, and H. L. Ashe. Type IV collagens regulate BMP signalling in Drosophila. Nature 455:72–77, 2008.PubMedGoogle Scholar
  170. 170.
    Wartenberg, M., et al. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J. 15:995–1005, 2001.PubMedGoogle Scholar
  171. 171.
    White, D. E., M. A. Kinney, T. C. Mcdevitt, and M. L. Kemp. Spatial pattern dynamics of 3D stem cell loss of pluripotency via rules-based computational modeling. PLoS Comput. Biol. 9:e1002952, 2013.PubMedCentralPubMedGoogle Scholar
  172. 172.
    Wilson, J. L., and T. C. Mcdevitt. Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnol. Bioeng. 110(3):667–682, 2012.Google Scholar
  173. 173.
    Wolfenson, H., I. Lavelin, and B. Geiger. Dynamic regulation of the structure and functions of integrin adhesions. Dev. Cell 24:447–458, 2013.PubMedGoogle Scholar
  174. 174.
    Wong, S. F., et al. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials 32:8087–8096, 2011.PubMedGoogle Scholar
  175. 175.
    Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.PubMedCentralPubMedGoogle Scholar
  176. 176.
    Wu, K. H., X. M. Mo, Z. C. Han, and B. Zhou. Stem cell engraftment and survival in the ischemic heart. Ann. Thorac. Surg. 92:1917–1925, 2011.PubMedGoogle Scholar
  177. 177.
    Yirme, G., M. Amit, I. Laevsky, S. Osenberg, and J. Itskovitz-Eldor. Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev. 17:1227–1241, 2008.PubMedGoogle Scholar
  178. 178.
    Yoon, B. S., et al. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation 74:149–159, 2006.PubMedGoogle Scholar
  179. 179.
    Zhang, L. Glycosaminoglycan (gag) biosynthesis and gag-binding proteins. Prog. Mol. Biol. Transl. Sci. 93:1–17, 2010.PubMedGoogle Scholar
  180. 180.
    Zhang, D., et al. Highly efficient differentiation of human ES cells and ips cells into mature pancreatic insulin-producing cells. Cell Res. 19:429–438, 2009.PubMedGoogle Scholar
  181. 181.
    Zhao, F., and T. Ma. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol. Bioeng. 91:482–493, 2005.PubMedGoogle Scholar
  182. 182.
    Zhou, J., H. Y. Kim, and L. A. Davidson. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–688, 2009.PubMedGoogle Scholar
  183. 183.
    Zhu, Y., A. Oganesian, D. R. Keene, and L. J. Sandell. Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta1 and BMP-2. J. Cell Biol. 144:1069–1080, 1999.PubMedGoogle Scholar
  184. 184.
    Zweigerdt, R., R. Olmer, H. Singh, A. Haverich, and U. Martin. Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 6:689–700, 2011.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Melissa A. Kinney
    • 1
  • Tracy A. Hookway
    • 1
  • Yun Wang
    • 1
  • Todd C. McDevitt
    • 1
    • 2
  1. 1.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory UniversityAtlantaUSA
  2. 2.The Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations