Annals of Biomedical Engineering

, Volume 42, Issue 2, pp 243–259 | Cite as

Nanomedicine: Tiny Particles and Machines Give Huge Gains

  • Sheng Tong
  • Eli J. Fine
  • Yanni Lin
  • Thomas J. Cradick
  • Gang Bao


Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Nano-scale structures and devices are compatible in size with proteins and nucleic acids in living cells. Therefore, the design, characterization and application of nano-scale probes, carriers and machines may provide unprecedented opportunities for achieving a better control of biological processes, and drastic improvements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of nanoparticle (NP)-based probes for molecular imaging, nano-carriers for drug/gene delivery, multifunctional NPs for theranostics, and molecular machines for biological and medical studies. This article provides an overview of the nanomedicine field, with an emphasis on NPs for imaging and therapy, as well as engineered nucleases for genome editing. The challenges in translating nanomedicine approaches to clinical applications are discussed.


Nanomedicine Nanoparticles Molecular imaging probes Engineered nucleases Multifunctional nanoparticle Genome editing 



This work was supported by the National Heart Lung and Blood Institute of the National Institutes of Health (NIH) as a Program of Excellence in Nanotechnology Award (HHSN268201000043C to GB), by an NIH Nanomedicine Development Center Award (PN2 EY018244 to GB), and by the National Science Foundation as a Science and Technology Center Grant (CBET-0939511).


  1. 1.
    Alexiou, C., et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60:6641–6648, 2000.PubMedGoogle Scholar
  2. 2.
    Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 22:47–52, 2004.PubMedGoogle Scholar
  3. 3.
    Alivisatos, A. P., W. Gu, and C. Larabell. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7:55–76, 2005.PubMedGoogle Scholar
  4. 4.
    Bao, G., S. Mitragotri, and S. Tong. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. 15:253–282, 2013.Google Scholar
  5. 5.
    Bertolini, L. R., et al. Transient depletion of Ku70 and Xrcc4 by RNAi as a means to manipulate the non-homologous end-joining pathway. J. Biotechnol. 128:246–257, 2007.PubMedGoogle Scholar
  6. 6.
    Bitinaite, J., D. A. Wah, A. K. Aggarwal, and I. Schildkraut. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95:10570–10575, 1998.PubMedGoogle Scholar
  7. 7.
    Bjornerud, A., et al. Use of intravascular contrast agents in MRI. Acad. Radiol. 5(Suppl 1):S223–S225, 1998.PubMedGoogle Scholar
  8. 8.
    Boch, J., et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512, 2009.PubMedGoogle Scholar
  9. 9.
    Bolotin, A., B. Quinquis, A. Sorokin, and S. D. Ehrlich. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561, 2005.PubMedGoogle Scholar
  10. 10.
    Bonasio, R., et al. Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc. Natl. Acad. Sci. USA 104:14753–14758, 2007.PubMedGoogle Scholar
  11. 11.
    Boyer, D., P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163, 2002.PubMedGoogle Scholar
  12. 12.
    Brooks, R. A., F. Moiny, and P. Gillis. On T2-shortening by weakly magnetized particles: the chemical exchange model. Magn. Reson. Med. 45:1014–1020, 2001.PubMedGoogle Scholar
  13. 13.
    Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016, 1998.PubMedGoogle Scholar
  14. 14.
    Brunetti, V., et al. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 5:307–317, 2013.PubMedGoogle Scholar
  15. 15.
    Busa, W. B., and R. Nuccitelli. Metabolic regulation via intracellular pH. Am. J. Physiol. 246:R409–R438, 1984.PubMedGoogle Scholar
  16. 16.
    Caldorera-Moore, M., and N. A. Peppas. Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv. Drug Deliv. Rev. 61:1391–1401, 2009.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9:653–660, 2003.PubMedGoogle Scholar
  18. 18.
    Champion, J. A., Y. K. Katare, and S. Mitragotri. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Controlled Release Off. J. Controlled Release Soc. 121:3–9, 2007.Google Scholar
  19. 19.
    Chan, W. C., and S. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018, 1998.PubMedGoogle Scholar
  20. 20.
    Chan, W. C. W., T. L. Prendergast, M. Jain, and S. Nie. One-step conjugation of biomolecules to luminescent nanocrystals. Proc. SPIE 3924:2–9, 2000.Google Scholar
  21. 21.
    Chang, E., et al. Protease-activated quantum dot probes. Biochem. Biophys. Res. Commun. 334:1317–1321, 2005.PubMedGoogle Scholar
  22. 22.
    Chattopadhyay, P. K., et al. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat. Med. 12:972–977, 2006.PubMedGoogle Scholar
  23. 23.
    Cheng, Z., A. Al Zaki, J. Z. Hui, V. R. Muzykantov, and A. Tsourkas. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910, 2012.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Chilkoti, A., M. R. Dreher, D. E. Meyer, and D. Raucher. Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev. 54:613–630, 2002.PubMedGoogle Scholar
  25. 25.
    Cho, M. H., et al. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11:1038–1043, 2012.PubMedGoogle Scholar
  26. 26.
    Choi, J. S., et al. Self-confirming “AND” logic nanoparticles for fault-free MRI. J. Am. Chem. Soc. 132:11015–11017, 2010.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Christian, M. L., et al. Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. Plos One 7:e45383, 2012.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Clapp, A. R., et al. Quantum dot-based multiplexed fluorescence resonance energy transfer. J. Am. Chem. Soc. 127:18212–18221, 2005.PubMedGoogle Scholar
  29. 29.
    Clement, O., N. Siauve, C. A. Cuenod, and G. Frija. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top. Magn. Reson. Imaging TMRI 9:167–182, 1998.Google Scholar
  30. 30.
    Cong, L., R. Zhou, Y. C. Kuo, M. Cunniff, and F. Zhang. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat. Commun. 3:968, 2012.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823, 2013.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Cornu, T. I., et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol. Ther. J. Am. Soc. Gene Ther. 16:352–358, 2008.Google Scholar
  33. 33.
    Cradick, T. J., G. Ambrosini, C. Iseli, P. Bucher, and A. P. McCaffrey. ZFN-Site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinform. 12:152, 2011.Google Scholar
  34. 34.
    Cradick, T. J., E. J. Fine, C. J. Antico, and G. Bao. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 41:9584–9592, 2013.Google Scholar
  35. 35.
    Cristea, S., et al. In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol. Bioeng. 110:871–880, 2013.PubMedGoogle Scholar
  36. 36.
    Dam, D. H., K. S. Culver, P. N. Sisco, and T. W. Odom. Shining light on nuclear-targeted therapy using gold nanostar constructs. Ther. Deliv. 3:1263–1267, 2012.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Dames, P., et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2:495–499, 2007.PubMedGoogle Scholar
  38. 38.
    Dennis, A. M., and G. Bao. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Lett. 8:1439–1445, 2008.PubMedGoogle Scholar
  39. 39.
    Dennis, A. M., W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6:2917–2924, 2012.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Dilnawaz, F., A. Singh, C. Mohanty, and S. K. Sahoo. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31:3694–3706, 2010.PubMedGoogle Scholar
  41. 41.
    Doshi, N., and S. Mitragotri. Designer biomaterials for nanomedicine. Adv. Funct. Mater. 19:3843–3854, 2009.Google Scholar
  42. 42.
    Doyon, Y., et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods 8:74–79, 2010.PubMedGoogle Scholar
  43. 43.
    Dreier, B., D. J. Segal, and C. F. Barbas, 3rd. Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains. J. Mol. Biol. 303:489–502, 2000.PubMedGoogle Scholar
  44. 44.
    Dubertret, B., et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762, 2002.PubMedGoogle Scholar
  45. 45.
    Engvall, E., and P. Perlmann. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin-G. Immunochemistry 8:871–874, 1971.PubMedGoogle Scholar
  46. 46.
    Euliss, L. E., J. A. DuPont, S. Gratton, and J. DeSimone. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35:1095–1104, 2006.PubMedGoogle Scholar
  47. 47.
    Fortin, J. P., et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129:2628–2635, 2007.PubMedGoogle Scholar
  48. 48.
    Fu, Y., et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–826, 2013.Google Scholar
  49. 49.
    Gannon, C. J., C. R. Patra, R. Bhattacharya, P. Mukherjee, and S. A. Curley. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 6:2, 2008.Google Scholar
  50. 50.
    Gao, X., Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22:969–976, 2004.PubMedGoogle Scholar
  51. 51.
    Garneau, J. E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71, 2010.PubMedGoogle Scholar
  52. 52.
    Garon, E. B., et al. Quantum dot labeling and tracking of human leukemic, bone marrow and cord blood cells. Leuk. Res. 31:643–651, 2007.PubMedGoogle Scholar
  53. 53.
    Gillis, P., and S. H. Koenig. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn. Reson. Med. 5:323–345, 1987.PubMedGoogle Scholar
  54. 54.
    Gillis, P., F. Moiny, and R. A. Brooks. On T(2)-shortening by strongly magnetized spheres: a partial refocusing model. Magn. Reson. Med. 47:257–263, 2002.PubMedGoogle Scholar
  55. 55.
    Gobin, A. M., et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7:1929–1934, 2007.PubMedGoogle Scholar
  56. 56.
    Goldman, E. R., et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74:841–847, 2002.PubMedGoogle Scholar
  57. 57.
    Guthi, J. S., et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol. Pharm. 7:32–40, 2010.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Halas, N. J. Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells. Mrs. Bull. 30:362–367, 2005.Google Scholar
  59. 59.
    Hale, C. R., et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956, 2009.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Hama, Y., Y. Koyama, Y. Urano, P. L. Choyke, and H. Kobayashi. Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res. Treat 103:23–28, 2007.PubMedGoogle Scholar
  61. 61.
    Hanna, J., et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923, 2007.PubMedGoogle Scholar
  62. 62.
    Herrmann, F., et al. p53 gene repair with zinc finger nucleases optimised by yeast 1-hybrid and validated by Solexa Sequencing. Plos One 6:e20913, 2011.Google Scholar
  63. 63.
    Hirsch, L. R., et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100:13549–13554, 2003.PubMedGoogle Scholar
  64. 64.
    Hong, G., et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. Engl. 51:9818–9821, 2012.PubMedGoogle Scholar
  65. 65.
    Hook, A. L., et al. High throughput methods applied in biomaterial development and discovery. Biomaterials 31:187–198, 2010.PubMedGoogle Scholar
  66. 66.
    Horvath, P., and R. Barrangou. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170, 2010.PubMedGoogle Scholar
  67. 67.
    Howarth, M., K. Takao, Y. Hayashi, and A. Y. Ting. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102:7583–7588, 2005.PubMedGoogle Scholar
  68. 68.
    Hsu, P. D., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–832, 2013.Google Scholar
  69. 69.
    Huang, X. H., I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128:2115–2120, 2006.PubMedGoogle Scholar
  70. 70.
    Jain, P. K., X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41:1578–1586, 2008.PubMedGoogle Scholar
  71. 71.
    Jain, P. K., K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110:7238–7248, 2006.PubMedGoogle Scholar
  72. 72.
    Jain, T. K., et al. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021, 2008.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Jaiswal, J. K., H. Mattoussi, J. M. Mauro, and S. M. Simon. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21:47–51, 2003.PubMedGoogle Scholar
  74. 74.
    Jamieson, A. C., S. H. Kim, and J. A. Wells. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33:5689–5695, 1994.PubMedGoogle Scholar
  75. 75.
    Jana, N. R., Y. F. Chen, and X. G. Peng. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 16:3931–3935, 2004.Google Scholar
  76. 76.
    Jang, J. T., et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48:1234–1238, 2009.Google Scholar
  77. 77.
    Joung, J. K., E. I. Ramm, and C. O. Pabo. A bacterial two-hybrid selection system for studying protein-DNA and protein–protein interactions. Proc. Natl. Acad. Sci. USA 97:7382–7387, 2000.PubMedGoogle Scholar
  78. 78.
    Jun, Y. W., J. W. Seo, and A. Cheon. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41:179–189, 2008.PubMedGoogle Scholar
  79. 79.
    Jun, Y. W., et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127:5732–5733, 2005.PubMedGoogle Scholar
  80. 80.
    Kim, Y. G., and S. Chandrasegaran. Chimeric restriction endonuclease. Proc. Natl. Acad. Sci. USA 91:883–887, 1994.PubMedGoogle Scholar
  81. 81.
    Kim, J. S., and C. O. Pabo. Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants. Proc. Natl. Acad. Sci. USA 95:2812–2817, 1998.PubMedGoogle Scholar
  82. 82.
    Kim, B. Y., J. T. Rutka, and W. C. Chan. Nanomedicine. N. Engl. J. Med. 363:2434–2443, 2010.PubMedGoogle Scholar
  83. 83.
    Kim, J., et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. Engl. 47:8438–8441, 2008.PubMedGoogle Scholar
  84. 84.
    Koenig, S. H., and K. E. Kellar. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn. Reson. Med. 34:227–233, 1995.PubMedGoogle Scholar
  85. 85.
    Krishnan, K. M., et al. Nanomagnetism and spin electronics: materials, microstructure and novel properties. J. Mater. Sci. 41:793–815, 2006.Google Scholar
  86. 86.
    Landázuri, N., et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small, 2013. doi:10.1002/smll.201300570.
  87. 87.
    Lee, C. M., R. Flynn, J. A. Hollywood, M. F. Scallan, and P. T. Harrison. Correction of the ∆F508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair. Biores. Open Access 1:99–108, 2012.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lee, J. H., et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13:95–99, 2007.PubMedGoogle Scholar
  89. 89.
    Lee, J. H., et al. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. Engl. 48:4174–4179, 2009.PubMedGoogle Scholar
  90. 90.
    Lee, J. H., et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6:418–422, 2011.PubMedGoogle Scholar
  91. 91.
    Lewin, M., et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18:410–414, 2000.PubMedGoogle Scholar
  92. 92.
    Li, W., and F. C. Szoka, Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 24:438–449, 2007.PubMedGoogle Scholar
  93. 93.
    Liong, M., et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896, 2008.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Mali, P., et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31:833–838, 2013.Google Scholar
  95. 95.
    Mallidi, S., T. Larson, J. Aaron, K. Sokolov, and S. Emelianov. Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt. Express 15:6583–6588, 2007.PubMedGoogle Scholar
  96. 96.
    Marraffini, L. A., and E. J. Sontheimer. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11:181–190, 2010.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Medarova, Z., W. Pham, C. Farrar, V. Petkova, and A. Moore. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13:372–377, 2007.PubMedGoogle Scholar
  98. 98.
    Medintz, I. L., H. T. Uyeda, E. R. Goldman, and H. Mattoussi. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4:435–446, 2005.PubMedGoogle Scholar
  99. 99.
    Medintz, I. L., et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat. Mater. 5:581–589, 2006.PubMedGoogle Scholar
  100. 100.
    Miller, J. C., et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25:778–785, 2007.PubMedGoogle Scholar
  101. 101.
    Montet, X., K. Montet-Abou, F. Reynolds, R. Weissleder, and L. Josephson. Nanoparticle imaging of integrins on tumor cells. Neoplasia 8:214–222, 2006.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Moscou, M. J., and A. J. Bogdanove. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501, 2009.PubMedGoogle Scholar
  103. 103.
    Mussolino, C., et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 39:9283–9293, 2011.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Nahrendorf, M., et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511, 2006.PubMedGoogle Scholar
  105. 105.
    Namiki, Y., et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat. Nanotechnol. 4:598–606, 2009.PubMedGoogle Scholar
  106. 106.
    Nie, S. M., X. Yun, J. K. Gloria, and J. W. Simmons. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9:257–288, 2007.PubMedGoogle Scholar
  107. 107.
    Nitin, N., L. E. LaConte, O. Zurkiya, X. Hu, and G. Bao. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem. 9:706–712, 2004.PubMedGoogle Scholar
  108. 108.
    Nobuto, H., et al. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int. J. Cancer 109:627–635, 2004.PubMedGoogle Scholar
  109. 109.
    Osborn, M. J., et al. TALEN-based gene correction for epidermolysis Bullosa. Mol. Ther. 21:1151–1159, 2013.PubMedGoogle Scholar
  110. 110.
    Park, J. H., G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem. Int. Ed. 47:7284–7288, 2008.Google Scholar
  111. 111.
    Park, J. H., et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 20:1630–1635, 2008.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Pellegrino, T., et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4:703–707, 2004.Google Scholar
  113. 113.
    Perez, J. M., L. Josephson, T. O’Loughlin, D. Hogemann, and R. Weissleder. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20:816–820, 2002.PubMedGoogle Scholar
  114. 114.
    Perez, E. E., J. Wang, J. C. Miller, Y. Jouvenot, K. A. Kim, O. Liu, N. Wang, G. Lee, V. V. Bartsevich, Y. L. Lee, D. Y. Guschin, I. Rupniewski, A. J. Waite, C. Carpenito, R. G. Carroll, J. S. Orange, F. D. Urnov, E. J. Rebar, D. Ando, P. D. Gregory, J. L. Riley, M. C. Holmes, and C. H. June. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26:808–816, 2008.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Platt, O. S., D. J. Brambilla, W. F. Rosse, P. F. Milner, O. Castro, M. H. Steinberg, and P. P. Klug. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med. 330:1639–1644, 1994.PubMedGoogle Scholar
  116. 116.
    Popovtzer, R., et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 8:4593–4596, 2008.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Porteus, M. H., and D. Baltimore. Chimeric nucleases stimulate gene targeting in human cells. Science 300:763, 2003.PubMedGoogle Scholar
  118. 118.
    Pridgen, E. M., R. Langer, and O. C. Farokhzad. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond) 2:669–680, 2007.Google Scholar
  119. 119.
    Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422, 2003.PubMedGoogle Scholar
  120. 120.
    Qian, X., et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26:83–90, 2008.PubMedGoogle Scholar
  121. 121.
    Ramirez, C. L., et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. 40:5560–5568, 2012.Google Scholar
  122. 122.
    Rebar, E. J., and C. O. Pabo. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263:671–673, 1994.PubMedGoogle Scholar
  123. 123.
    Reyon, D., et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30:460–465, 2012.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Rodríguez-Oliveros, R., and J. A. Sánchez-Gil. Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt. Express 20:621–626, 2012.PubMedGoogle Scholar
  125. 125.
    Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252:370–374, 2002.Google Scholar
  126. 126.
    Rouet, P., F. Smih, and M. Jasin. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91:6064–6068, 1994.PubMedGoogle Scholar
  127. 127.
    Sandell, E. B., and H. Õnishi. Photometric Determination of Traces of Metals (4th ed.). New York: Wiley, 1978.Google Scholar
  128. 128.
    Sander, J. D., et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 29:697–698, 2011.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Santra, S., C. Kaittanis, J. Grimm, and J. M. Perez. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 5:1862–1868, 2009.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Schmid-Burgk, J. L., T. Schmidt, V. Kaiser, K. Höning, and V. Hornung. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat. Biotechnol. 31:76–81, 2013.PubMedGoogle Scholar
  131. 131.
    Schroeder, A., et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12:39–50, 2012.Google Scholar
  132. 132.
    Segal, D. J., and J. F. Meckler. Genome engineering at the dawn of the golden age. Annu. Rev. Genomics Hum. Genet. 14:135–158, 2013.Google Scholar
  133. 133.
    Shin, J. M., et al. Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew. Chem. Int. Ed. 48:321–324, 2009.Google Scholar
  134. 134.
    Skrabalak, S. E., L. Au, X. D. Li, and Y. N. Xia. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2:2182–2190, 2007.PubMedGoogle Scholar
  135. 135.
    Smith, J., et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28:3361–3369, 2000.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Stanley, S. A., et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608, 2012.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Streubel, J., C. Blucher, A. Landgraf, and J. Boch. TAL effector RVD specificities and efficiencies. Nat. Biotechnol. 30:593–595, 2012.PubMedGoogle Scholar
  138. 138.
    Sun, N., J. Liang, Z. Abil, and H. Zhao. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol. Biosyst. 8:1255–1263, 2012.PubMedGoogle Scholar
  139. 139.
    Sun, S., et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126:273–279, 2004.PubMedGoogle Scholar
  140. 140.
    Szczepek, M., et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25:786–793, 2007.PubMedGoogle Scholar
  141. 141.
    Tang, T., et al. Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke J. Cereb. Circ. 37:2266–2270, 2006.Google Scholar
  142. 142.
    Thu, M. S., et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat. Med. 18:463–467, 2012.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Tong, S., S. Hou, B. Ren, Z. Zheng, and G. Bao. Self-assembly of phospholipid-PEG coating on nanoparticles through dual solvent exchange. Nano Lett. 11:3720–3726, 2011.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Tong, S., S. J. Hou, Z. L. Zheng, J. Zhou, and G. Bao. Coating optimization of superparamagnetic iron oxide nanoparticles for high T-2 relaxivity. Nano Lett. 10:4607–4613, 2010.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Tong, S., B. Ren, Z. Zheng, and G. Bao. Tiny grains give huge gains: nanocrystal-based signal amplification for immunosorbent assays. ACS Nano 7:5142–5150, 2013.PubMedGoogle Scholar
  146. 146.
    Torchilin, V. P., and V. S. Trubetskoy. Which polymers can make nanoparticulate drug carriers long-circulating. Adv. Drug Deliv. Rev. 16:141–155, 1995.Google Scholar
  147. 147.
    Tromberg, B. J., et al. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40, 2000.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Tromsdorf, U. I., et al. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett. 7:2422–2427, 2007.PubMedGoogle Scholar
  149. 149.
    Urnov, F. D., et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651, 2005.PubMedGoogle Scholar
  150. 150.
    Vanweeme, B. K., and A. H. W. Schuurs. Immunoassay using antigen–enzyme conjugates. Febs Lett. 15:232–236, 1971.Google Scholar
  151. 151.
    von Maltzahn, G., et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69:3892–3900, 2009.PubMedCentralGoogle Scholar
  152. 152.
    Voura, E. B., J. K. Jaiswal, H. Mattoussi, and S. M. Simon. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10:993–998, 2004.PubMedGoogle Scholar
  153. 153.
    Wagner, V., A. Dullaart, A. K. Bock, and A. Zweck. The emerging nanomedicine landscape. Nat. Biotechnol. 24:1211–1217, 2006.PubMedGoogle Scholar
  154. 154.
    Wang, Y. X., S. M. Hussain, and G. P. Krestin. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11:2319–2331, 2001.PubMedGoogle Scholar
  155. 155.
    Wang, Y. A., J. J. Li, H. Chen, and X. Peng. Stabilization of inorganic nanocrystals by organic dendrons. J. Am. Chem. Soc. 124:2293–2298, 2002.PubMedGoogle Scholar
  156. 156.
    Wang, Y., et al. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4:1689–1692, 2004.Google Scholar
  157. 157.
    Weber, E., R. Gruetzner, S. Werner, C. Engler, and S. Marillonnet. Assembly of designer TAL effectors by golden gate cloning. Plos One 6:e19722, 2011.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Weissleder, R., A. Bogdanov, E. A. Neuwelt, and M. Papisov. Long-circulating iron-oxides for MR imaging. Adv. Drug Deliv. Rev. 16:321–334, 1995.Google Scholar
  159. 159.
    Weissleder, R., et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am. J. Roentgenol. 152:167–173, 1989.PubMedGoogle Scholar
  160. 160.
    Wiedenheft, B., S. H. Sternberg, and J. A. Doudna. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338, 2012.PubMedGoogle Scholar
  161. 161.
    Winter, P. M., et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274, 2003.PubMedGoogle Scholar
  162. 162.
    Wood, A. J., T. W. Lo, B. Zeitler, C. S. Pickle, E. J. Ralston, A. H. Lee, R. Amora, J. C. Miller, E. Leung, X. Meng, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, and B. J. Meyer. Targeted genome editing across species using ZFNs and TALENs. Science 333:307, 2011.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Wu, X., et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21:41–46, 2003.PubMedGoogle Scholar
  164. 164.
    Xiao, A., et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res., 2013. doi:10.1093/nar/gkt464.
  165. 165.
    Xie, J., J. Huang, X. Li, S. Sun, and X. Chen. Iron oxide nanoparticle platform for biomedical applications. Curr. Med. Chem. 16:1278–1294, 2009.PubMedGoogle Scholar
  166. 166.
    Xu, Z. C., Y. L. Hou, and S. H. Sun. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 129:8698, 2007.PubMedGoogle Scholar
  167. 167.
    Xu, C. J., and S. H. Sun. Monodisperse magnetic nanoparticles for biomedical applications. Polym. Int. 56:821–826, 2007.Google Scholar
  168. 168.
    Xu, C., B. Xing, and J. Rao. A self-assembled quantum dot probe for detecting beta-lactamase activity. Biochem. Biophys. Res. Commun. 344:931–935, 2006.PubMedGoogle Scholar
  169. 169.
    Yang, X., S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang. Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Lett. 7:3798–3802, 2007.PubMedGoogle Scholar
  170. 170.
    Yang, X., E. W. Stein, S. Ashkenazi, and L. V. Wang. Nanoparticles for photoacoustic imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1:360–368, 2009.PubMedGoogle Scholar
  171. 171.
    Yao, H., Y. Zhang, F. Xiao, Z. Xia, and J. Rao. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew. Chem. Int. Ed. 46:4346–4349, 2007.Google Scholar
  172. 172.
    Yavuz, M. S., et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8:935–939, 2009.PubMedCentralPubMedGoogle Scholar
  173. 173.
    Yu, W. W., E. Chang, C. M. Sayes, R. Drezek, and V. L. Colvin. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 17:4483–4487, 2006.Google Scholar
  174. 174.
    Yu, W. W., J. C. Falkner, C. T. Yavuz, and V. L. Colvin. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2306–2307, 2004.Google Scholar
  175. 175.
    Zharov, V. P., E. N. Galitovskaya, C. Johnson, and T. Kelly. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg. Med. 37:219–226, 2005.PubMedGoogle Scholar
  176. 176.
    Zhu, M. T., B. Wang, Y. Wang, L. Yuan, H. J. Wang, M. Wang, H. Ouyang, Z. F. Chai, W. Y. Feng, and Y. L. Zhao. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol. Lett. 203:162–171, 2011.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Sheng Tong
    • 1
  • Eli J. Fine
    • 1
  • Yanni Lin
    • 1
  • Thomas J. Cradick
    • 1
  • Gang Bao
    • 1
  1. 1.Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA

Personalised recommendations