Annals of Biomedical Engineering

, Volume 42, Issue 4, pp 822–832 | Cite as

Quantification of a Thermal Damage Threshold for Astrocytes Using Infrared Laser Generated Heat Gradients

  • Rickard LiljemalmEmail author
  • Tobias NybergEmail author


The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.


Arrhenius Heating Cell damage Modeling Astrocytes 



Funding was received from the Product Innovation Engineering Program (PIEp) through the Innovation Driven Research Education (IDRE). We are grateful to Professor Hans Hebert at the School for Technology and Health at the Royal Institute of technology for providing the digital microscope.

Supplementary material

AVI (3502 KB)


  1. 1.
    Albert, E. S., J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J. Neurophysiol. 107(12):3227–3234, 2012.PubMedCrossRefGoogle Scholar
  2. 2.
    Bhowmick, S., J. E. Coad, D. J. Swanlund, and J. C. Bischof. In vitro thermal therapy of AT-1 Dunning prostate tumours. Int. J. Hyperthermia 20(1):73–92, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhowmick, S., D. J. Swanlund, and J. C. Bischof. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells. J. Biomech. Eng. 122(1):51–59, 2000.PubMedCrossRefGoogle Scholar
  4. 4.
    Dittami, G. M., S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J. Physiol. 589:1295–1306, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Douglas Fields, D. R. The Other Brain: The Scientific and Medical Breakthroughs That Will Heal Our Brains and Revolutionize Our Health (1st ed.). New York: Simon & Schuster, 2009.Google Scholar
  6. 6.
    Ebbesen, C. L., and H. Bruus. Analysis of laser-induced heating in optical neuronal guidance. J. Neurosci. Methods 209(1):168–177, 2012.PubMedCrossRefGoogle Scholar
  7. 7.
    Eul, S., A. I. Matic, M. Otting, J. T. Walsh Jr., and C. P. Richter. Optical stimulation in mice lacking the TRPV1 channel. In: Proceedings of the SPIE—The International Society for Optical Engineering (USA), 2009, p. 71800S (71805 pp.).Google Scholar
  8. 8.
    Fork, R. L. Laser stimulation of nerve cells in Aplysia. Science 171(3974):907–908, 1971.PubMedCrossRefGoogle Scholar
  9. 9.
    Goyal, V., S. Rajguru, A. I. Matic, S. R. Stock, and C. P. Richter. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation. Anat. Rec. (Hoboken) 295(11):1987–1999, 2012.CrossRefGoogle Scholar
  10. 10.
    He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31(5–6):355–422, 2003.PubMedCrossRefGoogle Scholar
  11. 11.
    He, X., and J. C. Bischof. The kinetics of thermal injury in human renal carcinoma cells. Ann. Biomed. Eng. 33(4):502–510, 2005.PubMedCrossRefGoogle Scholar
  12. 12.
    Henriques, Jr., F. C. Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol. (Chic.) 43(5):489–502, 1947.Google Scholar
  13. 13.
    Izzo, A. D., C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr. Laser stimulation of the auditory nerve. Lasers Surg. Med. 38(8):745–753, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Izzo, A. D., E. Suh, J. Pathria, J. T. Walsh, D. S. Whitlon, and C. P. Richter. Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J. Biomed. Opt. 12(2):021008, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Kornyei, Z., A. Czirok, T. Vicsek, and E. Madarasz. Proliferative and migratory responses of astrocytes to in vitro injury. J. Neurosci. Res. 61(4):421–429, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Lepock, J. R. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int. J. Hyperthermia 19(3):252–266, 2003.PubMedCrossRefGoogle Scholar
  17. 17.
    Liljemalm, R., T. Nyberg, and H. von Holst. Heating during infrared neural stimulation. Lasers Surg. Med. 45(7):469–481, 2013.PubMedCrossRefGoogle Scholar
  18. 18.
    Nishimura, R. N., B. E. Dwyer, K. Clegg, R. Cole, and J. de Vellis. Comparison of the heat shock response in cultured cortical neurons and astrocytes. Brain Res. Mol. Brain Res. 9(1–2):39–45, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Neill, D. P., T. Peng, P. Stiegler, U. Mayrhauser, S. Koestenbauer, K. Tscheliessnigg, and S. J. Payne. A three-state mathematical model of hyperthermic cell death. Ann. Biomed. Eng. 39(1):570–579, 2011.PubMedCrossRefGoogle Scholar
  20. 20.
    Pearce, J. Mathematical models of laser-induced tissue thermal damage. Int. J. Hyperthermia 27(8):741–750, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Rajguru, S. M., A. I. Matic, A. M. Robinson, A. J. Fishman, L. E. Moreno, A. Bradley, I. Vujanovic, J. Breen, J. D. Wells, M. Bendett, and C. P. Richter. Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear. Res. 269(1–2):102–111, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shapiro, M. G., K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3:736, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Simanovskii, D. M., M. A. Mackanos, A. R. Irani, C. E. O’Connell-Rodwell, C. H. Contag, H. A. Schwettman, and D. V. Palanker. Cellular tolerance to pulsed hyperthermia. Phys. Rev. E 74(1 Pt 1):011915, 2006.CrossRefGoogle Scholar
  24. 24.
    Thompson, A. C., S. A. Wade, W. G. Brown, and P. R. Stoddart. Modeling of light absorption in tissue during infrared neural stimulation. J. Biomed. Opt. 17(7):075002, 2012.PubMedCrossRefGoogle Scholar
  25. 25.
    Wells, J., C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J. 93(7):2567–2580, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wells, J. D., S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen. Optically mediated nerve stimulation: identification of injury thresholds. Lasers Surg. Med. 39(6):513–526, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    Wieliczka, D. M., W. Shengshan, and M. R. Querry. Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. Appl. Opt. 28:1714–1719, 1989.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.School of Technology and HealthRoyal Institute of TechnologyHuddingeSweden

Personalised recommendations