Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Enhancement of Non-Invasive Recording of Electroenterogram by Means of a Flexible Array of Concentric Ring Electrodes


Monitoring intestinal myoelectrical activity by electroenterogram (EEnG) would be of great clinical interest for diagnosing gastrointestinal pathologies and disorders. However, surface EEnG recordings are of very low amplitude and can be severely affected by baseline drifts and respiratory and electrocardiographic (ECG) interference. In this work, a flexible array of concentric ring electrodes was developed and tested to determine whether it can provide surface EEnG signals of better quality than bipolar recordings from conventional disc electrodes. With this aim, sixteen healthy subjects in a fasting state (>8 h) underwent recording. The capability of detecting intestinal pacemaker activity (slow wave) and the influence of physiological interferences were studied. The signals obtained from the concentric ring electrodes proved to be more robust to ECG and respiratory interference than those from conventional disc electrodes. The results also show that intestinal EEnG components such as the slow wave can be more easily identified by the proposed system based on a flexible array of concentric ring electrodes. The developed active electrode array could be a very valuable tool for non-invasive diagnosis of disease states such as ischemia and motility disorders of the small bowel which are known to alter the normal enteric slow wave activity.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    Abo, M., J. Liang, L. Qian, and J. D. Chen. Distension-induced myoelectrical dysrhythmia and effect of intestinal pacing in dogs. Dig. Dis. Sci. 45(1):129–135, 2000.

  2. 2.

    Besio, W., R. Aakula, K. Koka, and W. Dai. Development of a tri-polar concentric ring electrode for acquiring accurate Laplacian body surface potentials. Ann. Biomed. Eng. 34(3):426–435, 2006.

  3. 3.

    Besio, W., and T. Chen. Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiol. Meas. 28(5):515–529, 2007.

  4. 4.

    Bradshaw, L. A., S. H. Allos, J. P. Wikswo, Jr, and W. O. Richards. Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. Am. J. Physiol. 272(5 Pt 1):G1159–G1167, 1997.

  5. 5.

    Bradshaw, L. A., J. K. Ladipo, D. J. Staton, J. P. Wikswo, Jr, and W. O. Richards. The human vector magnetogastrogram and magnetoenterogram. IEEE Trans. Biomed. Eng. 46(8):959–970, 1999.

  6. 6.

    Bradshaw, L. A., W. O. Richards, and J. P. Wikswo, Jr. Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Med. Biol. Eng Comput. 39(1):35–43, 2001.

  7. 7.

    Caenepeel, P., W. Janssens, A. Accarino, J. Janssens, G. Vantrappen, and H. Eyssen. Variation of slow-wave frequency and locking during the migrating myoelectric complex in dogs. Am. J. Physiol. 261(6):G1079–G1084, 1991.

  8. 8.

    Chang, F. Y., C.-L. Lu, C.-Y. Chen, J.-C. Luo, S.-D. Lee, H.-C. Wu, and J. D. Z. Chen. Fasting and postprandial small intestinal slow waves non-invasively measured in subjects with total gastrectomy. Gastroenterology 22:247–252, 2006.

  9. 9.

    Chen, J. D. Z. Non-invasive measurement of gastric myoelectrical activity and its analysis and applications. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, 1998, pp. 2802–2807.

  10. 10.

    Chen, J. D. Z., D. Schirmer, and R. W. McCallum. Measurement of electric activity of the human small intestine using surface electrodes. IEEE Trans. Biomed. Eng. 40(6):598–602, 1993.

  11. 11.

    Clifton, J. A., J. Christensen, and H. P. Schedl. The human small intestinal slow wave. Trans. Am. Clin. Climatol. Assoc. 77:217–225, 1966.

  12. 12.

    Feltane, A., G. F. Boudreaux-Bartels, and W. Besio. Automatic seizure detection in rats using Laplacian EEG and verification with human seizure signals. Ann. Biomed. Eng. 41(3):645–654, 2013.

  13. 13.

    Fleckenstein, P., and A. Oigaard. Electrical spike activity in the human small intestine. A multiple electrode study of fasting diurnal variations. Am. J. Dig. Dis. 23(9):776–780, 1978.

  14. 14.

    Garcia-Casado, J., J. L. Martinez-de-Juan, and J. L. Ponce. Noninvasive measurement and analysis of intestinal myoelectrical activity using surface electrodes. IEEE Trans. Biomed. Eng. 52(6):983–991, 2005.

  15. 15.

    Garcia-Casado, J., J. L. Martinez-de-Juan, and J. L. Ponce. Adaptive filtering of ECG interference on surface EEnGs based on signal averaging. Physiol. Meas. 27(6):509–527, 2006.

  16. 16.

    Gruetzmann, A., S. Hansen, and J. Muller. Novel dry electrodes for ECG monitoring. Physiol. Meas. 28(11):1375–1390, 2007.

  17. 17.

    He, B., and R. J. Cohen. Body surface Laplacian mapping of cardiac electrical activity. Am. J. Cardiol. 70(20):1617–1620, 1992.

  18. 18.

    Koka, K., and W. G. Besio. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. J. Neurosci. Methods 165(2):216–222, 2007.

  19. 19.

    Lammers, W. J., H. M. Al-Bloushi, S. A. Al-Eisae, F. A. Al-Dhaheri, B. Stephen, R. John, S. Dhanasekaran, and M. Karam. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic. Exp. Physiol. 96:1039–1048, 2011.

  20. 20.

    Li, G., Y. Wang, W. Jiang, L. L. Wang, C.-Y. S. Lu, and W. G. Besio. Active Laplacian electrode for the data-acquisition system of EHG. J. Phys: Conf. Ser. 13:330–335, 2005.

  21. 21.

    Li, G. L., J. Lian, P. Salla, J. Cheng, I. Ramachandra, P. Shah, B. Avitall, and B. He. Body surface Laplacian electrocardiogram of ventricular depolarization in normal human subjects. J. Cardiovasc. Electrophysiol. 14(1):16–27, 2003.

  22. 22.

    Lian, J., G. Li, J. Cheng, B. Avitall, and B. He. Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Med. Biol. Eng Comput. 40(6):650–659, 2002.

  23. 23.

    Lin, Z. Y., and J. D. Z. Chen. Recursive running DCT algorithm and its application in adaptive filtering of surface electrical recording of small-intestine. Med. Biol. Eng. Comput. 32(3):317–322, 1994.

  24. 24.

    Lindh, W. Q., M. Pooler, C. D. Tamparo, B. M. Dahl, and J. Morris. Delmar’s Comprehensive Medical Assisting: Administrative and Clinical Competencies. Clifton Park, NY: Delmar Cengage Learning, p. 573, 2009.

  25. 25.

    Madl, C., and W. Druml. Gastrointestinal disorders of the critically ill. Systemic consequences of ileus. Best. Pract. Res. Clin. Gastroenterol. 17(3):445–456, 2003.

  26. 26.

    Merletti, R. Standards for reporting EMG data. J. Electromyography Kinesiol. 9(1):III–IV, 1999.

  27. 27.

    Morrison, P., B. W. Miedema, L. Kohler, and K. A. Kelly. Electrical rysrhythmias in the Roux jejunal limb—cause and treatment. Am. J. Surg. 160(3):252–256, 1990.

  28. 28.

    Park, H. The pathophysiology of irritable bowel syndrome: inflammation and motor disorder. Korean J. Gastroenterol. 47(2):101–110, 2006.

  29. 29.

    Prats-Boluda, G., J. Garcia-Casado, J. L. Martinez-de-Juan, and J. L. Ponce. Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans. Physiol. Meas. 28(9):1115–1133, 2007.

  30. 30.

    Prats-Boluda, G., J. Garcia-Casado, J. L. Martinez-de-Juan, and Y. Ye-Lin. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med. Eng. Phys. 33(4):446–455, 2011.

  31. 31.

    Prats-Boluda, G., Y. Ye-Lin, E. Garcia-Breijó, J. Ibañez, and J. Garcia-Casado. Active flexible concentric ring electrode for noninvasive surface bioelectrical recordings. Meas. Sci. Technol. 23(125703):1–10, 2012.

  32. 32.

    Saito, Y. A., P. R. Strege, D. J. Tester, G. R. Locke, N. J. Talley, C. E. Bernard, J. L. Rae, J. C. Makielski, M. J. Ackerman, and G. Farrugia. Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 296(2):G211–G218, 2009.

  33. 33.

    Shafik, A., A. A. Shafik, O. El Sibai, and I. Ahmed. Colonic pacing in patients with constipation due to colonic inertia. Med. Sci. Monit. 9(5):191–196, 2003.

  34. 34.

    Somarajan, S., S. Cassilly, C. Obioha, L. Bradshaw, and W. Richards. Noninvasive biomagnetic detection of isolated ischemic bowel segments. IEEE Trans. Biomed. Eng. 60(6):1677–1684, 2013.

  35. 35.

    Soundararajan, V., and W. Besio. Simulated comparison of disc and concentric electrode maps during atrial arrhythmias. Int. J. Bioelectromagn 7(1):217–220, 2005.

  36. 36.

    Summers, R. W., S. Anuras, and J. Green. Jejunal manometry patterns in health, partial intestinal obstruction, and pseudoobstruction. Gastroenterology 85(6):1290–1300, 1983.

  37. 37.

    Webster, J. G., J. W. Clark, Jr., M. R. Neuman, W. H. Olson, R. A. Peura, F. P. J. Primiano, M. P. Siedband, and L. A. Wheeler. Medical Instrumentation Application and Design. NewYork: Wiley, 1998.

  38. 38.

    Weisbrodt, N. W. Motility of the small intestine. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven Press, 1987, pp. 631–663.

  39. 39.

    Wu, D., H. C. Tsai, and B. He. On the estimation of the Laplacian electrocardiogram during ventricular activation. Ann. Biomed. Eng. 27(6):731–745, 1999.

  40. 40.

    Ye-Lin, Y., J. Garcia-Casado, J. L. Martinez-de-Juan, G. Prats-Boluda, and J. L. Ponce. The detection of intestinal spike activity on surface electroenterograms. Phys. Med. Biol. 55(3):663–680, 2010.

  41. 41.

    Ye-Lin, Y., J. Garcia-Casado, G. Prats-Boluda, J. L. Ponce, and J. L. Martinez-de-Juan. Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. Physiol. Meas. 30(9):885–902, 2009.

Download references


Research supported in part by the Ministerio de Ciencia y Tecnología de España (TEC 2010-16945). The proof-reading of this paper was funded by the Universitat Politècnica de València, Spain.

Author information

Correspondence to J. Garcia-Casado.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garcia-Casado, J., Zena-Gimenez, V., Prats-Boluda, G. et al. Enhancement of Non-Invasive Recording of Electroenterogram by Means of a Flexible Array of Concentric Ring Electrodes. Ann Biomed Eng 42, 651–660 (2014).

Download citation


  • Laplacian recording
  • Screen-printing technology
  • Intestinal slow wave
  • Gastrointestinal disorders