Skip to main content
Log in

Porous Implants Modulate Healing and Induce Shifts in Local Macrophage Polarization in the Foreign Body Reaction

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The foreign body reaction (FBR) to implanted materials is of critical importance when medical devices require biological integration and vascularization to support their proper function (e.g., transcutaneous devices, implanted drug delivery systems, tissue replacements, and sensors). One class of materials that improves FBR outcomes is made by sphere-templating, resulting in porous structures with uniform, interconnected 34 μm pores. With these materials we observe reduced fibrosis and increased vascularization. We hypothesized that improved healing is a result of a shift in macrophage polarization, often measured as the ratio of M1 pro-inflammatory cells to M2 pro-healing cells. In this study, macrophage polarity of 34 μm porous implants was compared to non-porous and 160 μm porous implants in subcutaneous mouse tissue. Immunohistochemistry revealed that macrophages in implant pores displayed a shift towards an M1 phenotype compared to externalized cells. Macrophages in 34 μm porous implants had up to 63% greater expression of M1 markers and up to 85% reduction in M2 marker expression (p < 0.05). Macrophages immediately outside the porous structure, in contrast, showed a significant enrichment in M2 phenotypic cells. This study supports a role for macrophage polarization in driving the FBR to implanted materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Acton, S., A. Rigotti, K. T. Landschulz, S. Xu, H. H. Hobbs, and M. Krieger. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271:518–520, 1996.

    Article  CAS  PubMed  Google Scholar 

  2. Anders, H.-J., and M. Ryu. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80:915–925, 2011.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, J. M. Biological response to materials. Annu. Rev. Mater. Res. 31:81–110, 2001.

    Article  CAS  Google Scholar 

  4. Anderson, J. M., and J. A. Jones. Phenotypic dichotomies in the foreign body reaction. Biomaterials 28:5114–5120, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20:86–100, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. A 14:1835–1842, 2008.

    Article  CAS  Google Scholar 

  7. Brauker, J. H., V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston, and R. C. Johnson. Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29:1517–1524, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Brodbeck, W. G., G. Voskerician, N. P. Ziats, Y. Nakayama, T. Matsuda, and J. M. Anderson. In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. J. Biomed. Mater. Res. 64A:320–329, 2003.

    Article  CAS  Google Scholar 

  9. Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chiu, Y.-C., M.-H. Cheng, H. Engel, S.-W. Kao, J. C. Larson, S. Gupta, and E. M. Brey. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32:6045–6051, 2011.

    CAS  PubMed  Google Scholar 

  11. Duffield, J. S., S. J. Forbes, C. M. Constandinou, S. Clay, M. Partolina, S. Vuthoori, S. Wu, R. Lang, and J. P. Iredale. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115:56–65, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dunne, A., and L. A. J. O’Neill. The interleukin-1 receptor/toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003:re3, 2003.

  13. East, L., and C. M. Isacke. The mannose receptor family. Biochim. Biophys. Acta 1572:364–386, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Gretzer, C., L. Emanuelsson, E. Liljensten, and P. Thomsen. The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. J. Biomater. Sci. Polym. Ed. 17:669–687, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Hunt, J. A., B. F. Flanagan, P. J. McLaughlin, I. Strickland, and D. F. Williams. Effect of biomaterial surface charge on the inflammatory response: evaluation of cellular infiltration and TNF alpha production. J. Biomed. Mater. Res. 31:139–144, 1996.

    Article  CAS  PubMed  Google Scholar 

  16. Jones, J. A., D. T. Chang, H. Meyerson, E. Colton, I. K. Kwon, T. Matsuda, and J. M. Anderson. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. A 83:585–596, 2007.

    Article  PubMed  Google Scholar 

  17. Källtorp, M., S. Oblogina, S. Jacobsson, A. Karlsson, P. Tengvall, and P. Thomsen. In vivo cell recruitment, cytokine release and chemiluminescence response at gold, and thiol functionalized surfaces. Biomaterials 20:2123–2137, 1999.

    Article  PubMed  Google Scholar 

  18. Kao, W. J., J. A. Hubbell, and J. M. Anderson. Protein-mediated macrophage adhesion and activation on biomaterials: a model for modulating cell behavior. J. Mater. Sci. Mater. Med. 10:601–605, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Kao, W. J., and D. Lee. In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains. Biomaterials 22:2901–2909, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Kao, W. J., A. K. McNally, A. Hiltner, and J. M. Anderson. Role for interleukin-4 in foreign-body giant cell formation on a poly(etherurethane urea) in vivo. J. Biomed. Mater. Res. 29:1267–1275, 1995.

    Article  CAS  PubMed  Google Scholar 

  21. Khramtsova, G., C. Liao, A. Khramtsov, S. Li, C. Gong, D. Huo, and R. Nanda. The M2/alternatively activated macrophage phenotype correlates with aggressive histopathologic features and poor clinical outcome in early stage breast cancer. Cancer Res. 69:107, 2009.

    Article  Google Scholar 

  22. Kigerl, K. A., J. C. Gensel, D. P. Ankeny, J. K. Alexander, D. J. Donnelly, and P. G. Popovich. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29:13435–13444, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Klosterhalfen, B., K. Junge, and U. Klinge. The lightweight and large porous mesh concept for hernia repair. Expert Rev. Med. Devices 2:103–117, 2005.

    Article  PubMed  Google Scholar 

  24. Le, S. J., M. Gongora, B. Zhang, S. Grimmond, G. R. Campbell, J. H. Campbell, and B. E. Rolfe. Gene expression profile of the fibrotic response in the peritoneal cavity. Differentiation 79:232–243, 2010.

    Article  CAS  PubMed  Google Scholar 

  25. Luttikhuizen, D. T., M. C. Harmsen, and M. J. A. Van Luyn. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 12:1955–1970, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Luttikhuizen, D. T., M. C. Harmsen, and M. J. A. van Luyn. Cytokine and chemokine dynamics differ between rats and mice after collagen implantation. J. Tissue Eng. Regen. Med. 1:398–405, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. MacMicking, J., Q. W. Xie, and C. Nathan. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15:323–350, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. PNAS 107:15211–15216, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Malik, A. F., R. Hoque, X. Ouyang, A. Ghani, E. Hong, K. Khan, L. B. Moore, G. Ng, F. Munro, R. A. Flavell, Y. Shi, T. R. Kyriakides, and W. Z. Mehal. Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response. PNAS 108:20095–20100, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Martinez, F. O., S. Gordon, M. Locati, and A. Mantovani. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177:7303–7311, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. McBane, J. E., L. A. Matheson, S. Sharifpoor, J. P. Santerre, and R. S. Labow. Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage. Biomaterials 30:5497–5504, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Moilanen, E., T. Moilanen, R. Knowles, I. Charles, Y. Kadoya, N. al-Saffar, P. A. Revell, and S. Moncada. Nitric oxide synthase is expressed in human macrophages during foreign body inflammation. Am. J. Pathol. 150:881–887, 1997.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Mokarram, N., A. Merchant, V. Mukhatyar, G. Patel, and R. V. Bellamkonda. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33:8793–8801, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mooney, J. E., B. E. Rolfe, G. W. Osborne, D. P. Sester, N. van Rooijen, G. R. Campbell, D. A. Hume, and J. H. Campbell. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. Am. J. Pathol. 176:369–380, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mosser, D. M. The many faces of macrophage activation. J. Leukoc. Biol. 73:209–212, 2003.

    Article  CAS  PubMed  Google Scholar 

  37. Murray, P. J., and T. A. Wynn. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89:557–563, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ratner, B. D. A paradigm shift: biomaterials that heal. Polym. Int. 56:1183–1185, 2007.

    Article  CAS  Google Scholar 

  39. Refai, A. K., M. Textor, D. M. Brunette, and J. D. Waterfield. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J. Biomed. Mater. Res. A 70A:194–205, 2004.

    Article  CAS  Google Scholar 

  40. Ricardo, S. D., H. van Goor, and A. A. Eddy. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118:3522–3530, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rodriguez, A., H. Meyerson, and J. M. Anderson. Quantitative in vivo cytokine analysis at synthetic biomaterial implant sites. J. Biomed. Mater. Res. 89A:152–159, 2009.

    CAS  Google Scholar 

  42. Schutte, R. J., L. Xie, B. Klitzman, and W. M. Reichert. In vivo cytokine-associated responses to biomaterials. Biomaterials 30:160–168, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sharkawy, A. A., B. Klitzman, G. A. Truskey, and W. M. Reichert. Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J. Biomed. Mater. Res. 40:598–605, 1998.

    Article  CAS  PubMed  Google Scholar 

  44. Sica, A., T. Schioppa, A. Mantovani, and P. Allavena. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42:717–727, 2006.

    Article  CAS  PubMed  Google Scholar 

  45. Stein, M., S. Keshav, N. Harris, and S. Gordon. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176:287–292, 1992.

    Article  CAS  PubMed  Google Scholar 

  46. Tan, K. S., L. Qian, R. Rosado, P. M. Flood, and L. F. Cooper. The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production. Biomaterials 27:5170–5177, 2006.

    Article  CAS  PubMed  Google Scholar 

  47. Tang, L., and J. W. Eaton. Natural responses to unnatural materials: a molecular mechanism for foreign body reactions. Mol. Med. 5:351–358, 1999.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Tidball, J. G., and S. A. Villalta. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1173–R1187, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Villalta, S. A., H. X. Nguyen, B. Deng, T. Gotoh, and J. G. Tidball. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 18:482–496, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Vogt, J., G. Brandes, I. Krüger, P. Behrens, I. Nolte, T. Lenarz, and M. Stieve. A comparison of different nanostructured biomaterials in subcutaneous tissue. J. Mater. Sci. Mater. Med. 19:2629–2636, 2008.

    Article  CAS  PubMed  Google Scholar 

  51. Von Recum, A. F., and T. G. Van Kooten. The influence of micro-topography on cellular response and the implications for silicone implants. J. Biomater. Sci. Polym. Ed. 7:181–198, 1996.

    Article  Google Scholar 

  52. Wang, X., M. R. Lennartz, D. J. Loegering, and J. A. Stenken. Multiplexed cytokine detection of interstitial fluid collected from polymeric hollow tube implants—a feasibility study. Cytokine 43:15–19, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ward, W. K., E. P. Slobodzian, K. L. Tiekotter, and M. D. Wood. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23:4185–4192, 2002.

    Article  CAS  PubMed  Google Scholar 

  54. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214:199–210, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Xia, Z., and J. T. Triffitt. A review on macrophage responses to biomaterials. Biomed. Mater. 1:R1–R9, 2006.

    Article  CAS  PubMed  Google Scholar 

  56. Zeyda, M., D. Farmer, J. Todoric, O. Aszmann, M. Speiser, G. Gyori, G. J. Zlabinger, and T. M. Stulnig. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int. J. Obes. 31:1420–1428, 2007.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were funded by University of Washington Engineered Biomaterials (UWEB21). Materials support was from RTM who is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buddy D. Ratner.

Additional information

Associate Editor Tzung Hsiai oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sussman, E.M., Halpin, M.C., Muster, J. et al. Porous Implants Modulate Healing and Induce Shifts in Local Macrophage Polarization in the Foreign Body Reaction. Ann Biomed Eng 42, 1508–1516 (2014). https://doi.org/10.1007/s10439-013-0933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0933-0

Keywords

Navigation