Annals of Biomedical Engineering

, Volume 42, Issue 7, pp 1508–1516 | Cite as

Porous Implants Modulate Healing and Induce Shifts in Local Macrophage Polarization in the Foreign Body Reaction

  • Eric M. Sussman
  • Michelle C. Halpin
  • Jeanot Muster
  • Randall T. Moon
  • Buddy D. Ratner
Article

Abstract

The foreign body reaction (FBR) to implanted materials is of critical importance when medical devices require biological integration and vascularization to support their proper function (e.g., transcutaneous devices, implanted drug delivery systems, tissue replacements, and sensors). One class of materials that improves FBR outcomes is made by sphere-templating, resulting in porous structures with uniform, interconnected 34 μm pores. With these materials we observe reduced fibrosis and increased vascularization. We hypothesized that improved healing is a result of a shift in macrophage polarization, often measured as the ratio of M1 pro-inflammatory cells to M2 pro-healing cells. In this study, macrophage polarity of 34 μm porous implants was compared to non-porous and 160 μm porous implants in subcutaneous mouse tissue. Immunohistochemistry revealed that macrophages in implant pores displayed a shift towards an M1 phenotype compared to externalized cells. Macrophages in 34 μm porous implants had up to 63% greater expression of M1 markers and up to 85% reduction in M2 marker expression (p < 0.05). Macrophages immediately outside the porous structure, in contrast, showed a significant enrichment in M2 phenotypic cells. This study supports a role for macrophage polarization in driving the FBR to implanted materials.

Keywords

M1 M2 Vascularization Foreign body capsule Sphere-templated porous scaffolds 

Notes

Acknowledgments

These studies were funded by University of Washington Engineered Biomaterials (UWEB21). Materials support was from RTM who is an investigator of the Howard Hughes Medical Institute.

References

  1. 1.
    Acton, S., A. Rigotti, K. T. Landschulz, S. Xu, H. H. Hobbs, and M. Krieger. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271:518–520, 1996.PubMedCrossRefGoogle Scholar
  2. 2.
    Anders, H.-J., and M. Ryu. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80:915–925, 2011.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson, J. M. Biological response to materials. Annu. Rev. Mater. Res. 31:81–110, 2001.CrossRefGoogle Scholar
  4. 4.
    Anderson, J. M., and J. A. Jones. Phenotypic dichotomies in the foreign body reaction. Biomaterials 28:5114–5120, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20:86–100, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. A 14:1835–1842, 2008.CrossRefGoogle Scholar
  7. 7.
    Brauker, J. H., V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston, and R. C. Johnson. Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29:1517–1524, 1995.PubMedCrossRefGoogle Scholar
  8. 8.
    Brodbeck, W. G., G. Voskerician, N. P. Ziats, Y. Nakayama, T. Matsuda, and J. M. Anderson. In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. J. Biomed. Mater. Res. 64A:320–329, 2003.CrossRefGoogle Scholar
  9. 9.
    Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Chiu, Y.-C., M.-H. Cheng, H. Engel, S.-W. Kao, J. C. Larson, S. Gupta, and E. M. Brey. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32:6045–6051, 2011.PubMedGoogle Scholar
  11. 11.
    Duffield, J. S., S. J. Forbes, C. M. Constandinou, S. Clay, M. Partolina, S. Vuthoori, S. Wu, R. Lang, and J. P. Iredale. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115:56–65, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Dunne, A., and L. A. J. O’Neill. The interleukin-1 receptor/toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003:re3, 2003.Google Scholar
  13. 13.
    East, L., and C. M. Isacke. The mannose receptor family. Biochim. Biophys. Acta 1572:364–386, 2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Gretzer, C., L. Emanuelsson, E. Liljensten, and P. Thomsen. The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. J. Biomater. Sci. Polym. Ed. 17:669–687, 2006.PubMedCrossRefGoogle Scholar
  15. 15.
    Hunt, J. A., B. F. Flanagan, P. J. McLaughlin, I. Strickland, and D. F. Williams. Effect of biomaterial surface charge on the inflammatory response: evaluation of cellular infiltration and TNF alpha production. J. Biomed. Mater. Res. 31:139–144, 1996.PubMedCrossRefGoogle Scholar
  16. 16.
    Jones, J. A., D. T. Chang, H. Meyerson, E. Colton, I. K. Kwon, T. Matsuda, and J. M. Anderson. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. A 83:585–596, 2007.PubMedCrossRefGoogle Scholar
  17. 17.
    Källtorp, M., S. Oblogina, S. Jacobsson, A. Karlsson, P. Tengvall, and P. Thomsen. In vivo cell recruitment, cytokine release and chemiluminescence response at gold, and thiol functionalized surfaces. Biomaterials 20:2123–2137, 1999.PubMedCrossRefGoogle Scholar
  18. 18.
    Kao, W. J., J. A. Hubbell, and J. M. Anderson. Protein-mediated macrophage adhesion and activation on biomaterials: a model for modulating cell behavior. J. Mater. Sci. Mater. Med. 10:601–605, 1999.PubMedCrossRefGoogle Scholar
  19. 19.
    Kao, W. J., and D. Lee. In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains. Biomaterials 22:2901–2909, 2001.PubMedCrossRefGoogle Scholar
  20. 20.
    Kao, W. J., A. K. McNally, A. Hiltner, and J. M. Anderson. Role for interleukin-4 in foreign-body giant cell formation on a poly(etherurethane urea) in vivo. J. Biomed. Mater. Res. 29:1267–1275, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Khramtsova, G., C. Liao, A. Khramtsov, S. Li, C. Gong, D. Huo, and R. Nanda. The M2/alternatively activated macrophage phenotype correlates with aggressive histopathologic features and poor clinical outcome in early stage breast cancer. Cancer Res. 69:107, 2009.CrossRefGoogle Scholar
  22. 22.
    Kigerl, K. A., J. C. Gensel, D. P. Ankeny, J. K. Alexander, D. J. Donnelly, and P. G. Popovich. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29:13435–13444, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Klosterhalfen, B., K. Junge, and U. Klinge. The lightweight and large porous mesh concept for hernia repair. Expert Rev. Med. Devices 2:103–117, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Le, S. J., M. Gongora, B. Zhang, S. Grimmond, G. R. Campbell, J. H. Campbell, and B. E. Rolfe. Gene expression profile of the fibrotic response in the peritoneal cavity. Differentiation 79:232–243, 2010.PubMedCrossRefGoogle Scholar
  25. 25.
    Luttikhuizen, D. T., M. C. Harmsen, and M. J. A. Van Luyn. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 12:1955–1970, 2006.PubMedCrossRefGoogle Scholar
  26. 26.
    Luttikhuizen, D. T., M. C. Harmsen, and M. J. A. van Luyn. Cytokine and chemokine dynamics differ between rats and mice after collagen implantation. J. Tissue Eng. Regen. Med. 1:398–405, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    MacMicking, J., Q. W. Xie, and C. Nathan. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15:323–350, 1997.PubMedCrossRefGoogle Scholar
  28. 28.
    Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. PNAS 107:15211–15216, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Malik, A. F., R. Hoque, X. Ouyang, A. Ghani, E. Hong, K. Khan, L. B. Moore, G. Ng, F. Munro, R. A. Flavell, Y. Shi, T. R. Kyriakides, and W. Z. Mehal. Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response. PNAS 108:20095–20100, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Martinez, F. O., S. Gordon, M. Locati, and A. Mantovani. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177:7303–7311, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    McBane, J. E., L. A. Matheson, S. Sharifpoor, J. P. Santerre, and R. S. Labow. Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage. Biomaterials 30:5497–5504, 2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Moilanen, E., T. Moilanen, R. Knowles, I. Charles, Y. Kadoya, N. al-Saffar, P. A. Revell, and S. Moncada. Nitric oxide synthase is expressed in human macrophages during foreign body inflammation. Am. J. Pathol. 150:881–887, 1997.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Mokarram, N., A. Merchant, V. Mukhatyar, G. Patel, and R. V. Bellamkonda. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33:8793–8801, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Mooney, J. E., B. E. Rolfe, G. W. Osborne, D. P. Sester, N. van Rooijen, G. R. Campbell, D. A. Hume, and J. H. Campbell. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. Am. J. Pathol. 176:369–380, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Mosser, D. M. The many faces of macrophage activation. J. Leukoc. Biol. 73:209–212, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Murray, P. J., and T. A. Wynn. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89:557–563, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Ratner, B. D. A paradigm shift: biomaterials that heal. Polym. Int. 56:1183–1185, 2007.CrossRefGoogle Scholar
  39. 39.
    Refai, A. K., M. Textor, D. M. Brunette, and J. D. Waterfield. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J. Biomed. Mater. Res. A 70A:194–205, 2004.CrossRefGoogle Scholar
  40. 40.
    Ricardo, S. D., H. van Goor, and A. A. Eddy. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118:3522–3530, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Rodriguez, A., H. Meyerson, and J. M. Anderson. Quantitative in vivo cytokine analysis at synthetic biomaterial implant sites. J. Biomed. Mater. Res. 89A:152–159, 2009.Google Scholar
  42. 42.
    Schutte, R. J., L. Xie, B. Klitzman, and W. M. Reichert. In vivo cytokine-associated responses to biomaterials. Biomaterials 30:160–168, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sharkawy, A. A., B. Klitzman, G. A. Truskey, and W. M. Reichert. Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J. Biomed. Mater. Res. 40:598–605, 1998.PubMedCrossRefGoogle Scholar
  44. 44.
    Sica, A., T. Schioppa, A. Mantovani, and P. Allavena. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42:717–727, 2006.PubMedCrossRefGoogle Scholar
  45. 45.
    Stein, M., S. Keshav, N. Harris, and S. Gordon. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176:287–292, 1992.PubMedCrossRefGoogle Scholar
  46. 46.
    Tan, K. S., L. Qian, R. Rosado, P. M. Flood, and L. F. Cooper. The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production. Biomaterials 27:5170–5177, 2006.PubMedCrossRefGoogle Scholar
  47. 47.
    Tang, L., and J. W. Eaton. Natural responses to unnatural materials: a molecular mechanism for foreign body reactions. Mol. Med. 5:351–358, 1999.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Tidball, J. G., and S. A. Villalta. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1173–R1187, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Villalta, S. A., H. X. Nguyen, B. Deng, T. Gotoh, and J. G. Tidball. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 18:482–496, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Vogt, J., G. Brandes, I. Krüger, P. Behrens, I. Nolte, T. Lenarz, and M. Stieve. A comparison of different nanostructured biomaterials in subcutaneous tissue. J. Mater. Sci. Mater. Med. 19:2629–2636, 2008.PubMedCrossRefGoogle Scholar
  51. 51.
    Von Recum, A. F., and T. G. Van Kooten. The influence of micro-topography on cellular response and the implications for silicone implants. J. Biomater. Sci. Polym. Ed. 7:181–198, 1996.CrossRefGoogle Scholar
  52. 52.
    Wang, X., M. R. Lennartz, D. J. Loegering, and J. A. Stenken. Multiplexed cytokine detection of interstitial fluid collected from polymeric hollow tube implants—a feasibility study. Cytokine 43:15–19, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Ward, W. K., E. P. Slobodzian, K. L. Tiekotter, and M. D. Wood. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23:4185–4192, 2002.PubMedCrossRefGoogle Scholar
  54. 54.
    Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214:199–210, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Xia, Z., and J. T. Triffitt. A review on macrophage responses to biomaterials. Biomed. Mater. 1:R1–R9, 2006.PubMedCrossRefGoogle Scholar
  56. 56.
    Zeyda, M., D. Farmer, J. Todoric, O. Aszmann, M. Speiser, G. Gyori, G. J. Zlabinger, and T. M. Stulnig. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int. J. Obes. 31:1420–1428, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Eric M. Sussman
    • 1
  • Michelle C. Halpin
    • 1
  • Jeanot Muster
    • 2
    • 4
    • 5
  • Randall T. Moon
    • 2
    • 4
    • 5
  • Buddy D. Ratner
    • 1
    • 3
    • 5
  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of PharmacologyUniversity of WashingtonSeattleUSA
  3. 3.Department of Chemical EngineeringUniversity of WashingtonSeattleUSA
  4. 4.Howard Hughes Medical InstituteUniversity of Washington School of MedicineSeattleUSA
  5. 5.Institute for Stem Cell and Regenerative MedicineUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations