Annals of Biomedical Engineering

, Volume 42, Issue 7, pp 1424–1435 | Cite as

Seeding Cells on Calcium Phosphate Scaffolds Using Hydrogel Enhanced Osteoblast Proliferation and Differentiation

  • Min-Ho Hong
  • Sung-Min Kim
  • Ji-Yeon Om
  • Namyong Kwon
  • Yong-Keun LeeEmail author


Internal pores in calcium phosphate (CaP) scaffolds pose an obstacle in cell seeding efficiency. Previous studies have shown inverse relationships between cell attachment and internal pore size, which mainly resulted from cells flowing to the bottom of culture plates. In order to overcome this structure-based setback, we have designed a method for cell seeding that involves hydrogel. CaP scaffolds fabricated with hydroxyapatite, biphasic calcium phosphate, and β-tricalcium phosphate, had respective porosities of 77.0, 77.9, and 82.5% and pore diameters of 671.1, 694.7, and 842.8 μm. We seeded the cells on the scaffolds using two methods: the first using osteogenic medium and the second using hydrogel to entrap cells. As expected, cell seeding efficiency of the groups with hydrogel ranged from 92.5 to 96.3%, whereas efficiency of the control groups ranged only from 64.2 to 71.8%. Cell proliferation followed a similar trend, which may have further influenced early stages of cell differentiation. We suggest that our method of cell seeding with hydrogel can impact the field of tissue engineering even further with modifications of the materials or the addition of biological factors.


Bone tissue engineering Calcium phosphate scaffold Hydrogel Cell seeding efficiency Three-dimensional culture 



We thank Heon Goo Lee (Columbia University, NY), Jaeryong Ko (Vassar College, NY), Phillip Lim (Johns Hopkins University, MD), Jae-Sung Kwon, M.D. (Yonsei University, Korea), and Kang-Sik Lee, Ph.D. (ASAN Medical Center, Korea) for their helpful comments.


  1. 1.
    Abbott, A. Cell culture: biology’s new dimension. Nature 424(6951):870–872, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Daculsi, G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19(16):1473–1478, 1998.PubMedCrossRefGoogle Scholar
  4. 4.
    Damien, E., K. Hing, S. Saeed, and P. A. Revell. A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. J. Biomed. Mater. Res. A 66A(2):241–246, 2003.CrossRefGoogle Scholar
  5. 5.
    Degroot, K. Bioceramics consisting of calcium-phosphate salts. Biomaterials 1(1):47–50, 1980.CrossRefGoogle Scholar
  6. 6.
    Delgado-Calle, J., C. Sanudo, L. Sanchez-Verde, R. J. Garcia-Renedo, J. Arozamena, and J. A. Riancho. Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone 49(4):830–838, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Dorozhkin, S. V., and M. Epple. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41(17):3130–3146, 2002.CrossRefGoogle Scholar
  8. 8.
    Dvir-Ginzberg, M., I. Gamlieli-Bonshtein, R. Agbaria, and S. Cohen. Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng. 9(4):757–766, 2003.PubMedCrossRefGoogle Scholar
  9. 9.
    Hattori, H., K. Masuoka, M. Sato, M. Ishihara, T. Asazuma, B. Takase, M. Kikuchi, K. Nemoto, and M. Ishihara. Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. J. Biomed. Mater. Res. B 76B(1):230–239, 2006.CrossRefGoogle Scholar
  10. 10.
    Hench, L. L., and J. M. Polak. Third-generation biomedical materials. Science 295(5557):1014–1017, 2002.Google Scholar
  11. 11.
    Hoffman, R. M. To do tissue-culture in 2 or 3 dimensions—that is the question. Stem Cells 11(2):105–111, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Holmes, T. C., S. de Lacalle, X. Su, G. S. Liu, A. Rich, and S. G. Zhang. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. U.S.A. 97(12):6728–6733, 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Holtorf, H. L., T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Ann. Biomed. Eng. 33(9):1238–1248, 2005.PubMedCrossRefGoogle Scholar
  14. 14.
    Horii, A., X. M. Wang, F. Gelain, and S. G. Zhang. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS ONE 2(2):e190, 2007.Google Scholar
  15. 15.
    Hubbell, J. A. Biomater. Tissue Eng. 13(6):565–576, 1995.Google Scholar
  16. 16.
    Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543, 2000.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim, Y. B., and G. Kim. Rapid-prototyped collagen scaffolds reinforced with PCL/beta-TCP nanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bone tissue regeneration. J. Mater. Chem. 22(33):16880–16889, 2012.CrossRefGoogle Scholar
  18. 18.
    Kim, S. S., M. S. Park, O. Jeon, C. Y. Choi, and B. S. Kim. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409, 2006.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim, S. M., S. A. Yi, S. H. Choi, K. M. Kim, and Y. K. Lee. Gelatin-layered and multi-sized porous beta-tricalcium phosphate for tissue engineering scaffold. Nanoscale Res. Lett. 7(1):78, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Koch, M. A., E. J. Vrij, E. Engel, J. A. Planell, and D. Lacroix. Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J. Biomed. Mater. Res. A 95A(4):1011–1018, 2010.CrossRefGoogle Scholar
  21. 21.
    Laurencin, C. T. N. L. S. Nanotechnology and Tissue Engineering: The Scaffold. Boca Raton: CRC Press, 2008.Google Scholar
  22. 22.
    McGrath, A. M., L. N. Novikova, L. N. Novikov, and M. Wiberg. BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res. Bull. 83(5):207–213, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Narmoneva, D. A., O. Oni, A. L. Sieminski, S. G. Zhang, J. P. Gertler, R. D. Kamm, and R. T. Lee. Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26(23):4837–4846, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Nery, E. B., R. Z. Legeros, K. L. Lynch, and K. Lee. Tissue-response to biphasic calcium-phosphate ceramic with different ratios of Ha/Beta-Tcp in periodontal osseous defects. J. Periodontol. 63(9):729–735, 1992.PubMedCrossRefGoogle Scholar
  25. 25.
    Olivares, A. L., and D. Lacroix. Simulation of cell seeding within a three-dimensional porous scaffold: a fluid-particle analysis. Tissue Eng. C 18(8):624–631, 2012.CrossRefGoogle Scholar
  26. 26.
    Papadimitropoulos, A., S. A. Riboldi, B. Tonnarelli, E. Piccinini, M. A. Woodruff, D. W. Hutmacher, and I. Martin. A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion. J. Tissue Eng. Regen. Med. 7(3):183–191, 2013.PubMedCrossRefGoogle Scholar
  27. 27.
    Park, J., S. Bauer, K. A. Schlegel, F. W. Neukam, K. von der Mark, and P. Schmuki. TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small 5(6):666–671, 2009.PubMedCrossRefGoogle Scholar
  28. 28.
    Park, J., S. Bauer, P. Schmuki, and K. von der Mark. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 9(9):3157–3164, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Pfister, A., R. Landers, A. Laib, U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J. Polym. Sci. A 42(3):624–638, 2004.CrossRefGoogle Scholar
  30. 30.
    Rose, F. R., L. A. Cyster, D. M. Grant, C. A. Scotchford, S. M. Howdle, and K. M. Shakesheff. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 25(24):5507–5514, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Ryu, H. S., H. J. Youn, K. S. Hong, B. S. Chang, C. K. Lee, and S. S. Chung. An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23(3):909–914, 2002.PubMedCrossRefGoogle Scholar
  32. 32.
    Sanchez-Salcedo, S., A. Nieto, and M. Vallet-Regi. Hydroxyapatite/beta-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem. Eng. J. 137(1):62–71, 2008.CrossRefGoogle Scholar
  33. 33.
    Schmittgen, T. D., B. A. Zakrajsek, A. G. Mills, V. Gorn, M. J. Singer, and M. W. Reed. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285(2):194–204, 2000.PubMedCrossRefGoogle Scholar
  34. 34.
    Schumacher, M., F. Uhl, R. Detsch, U. Deisinger, and G. Ziegler. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 21(11):3039–3048, 2010.PubMedCrossRefGoogle Scholar
  35. 35.
    Sobral, J. M., S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7(3):1009–1018, 2011.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, H. Y., D. T. K. Kwok, M. Xu, H. G. Shi, Z. W. Wu, W. Zhang, and P. K. Chu. Tailoring of mesenchymal stem cells behavior on plasma-modified polytetrafluoroethylene. Adv. Mater. 24(25):3315–3324, 2012.PubMedCrossRefGoogle Scholar
  37. 37.
    Wendt, D., A. Marsano, M. Jakob, M. Heberer, and I. Martin. Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol. Bioeng. 84(2):205–214, 2003.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhao, F., and T. Ma. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol. Bioeng. 91(4):482–493, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Min-Ho Hong
    • 2
    • 3
  • Sung-Min Kim
    • 3
  • Ji-Yeon Om
    • 3
  • Namyong Kwon
    • 4
  • Yong-Keun Lee
    • 1
    Email author
  1. 1.YesBioGold Co., Ltd.SeoulKorea
  2. 2.Department of Orthopaedic Surgery, Center for Orthopaedic ResearchColumbia University Medical CenterNew YorkUSA
  3. 3.Department of Applied Life ScienceYonsei University College of DentistrySeoulKorea
  4. 4.SKKU Advanced Institute of NanotechnologySungkyunkwan UniversitySuwonKorea

Personalised recommendations