Annals of Biomedical Engineering

, Volume 42, Issue 3, pp 475–487 | Cite as

In Vitro and Numerical Support for Combinatorial Irreversible Electroporation and Electrochemotherapy Glioma Treatment

  • R. E. NealII
  • J. H. RossmeislJr.
  • V. D’Alfonso
  • J. L. Robertson
  • P. A. Garcia
  • S. Elankumaran
  • R. V. Davalos
Article

Abstract

Irreversible electroporation (IRE) achieves targeted volume non-thermal focal ablation using a series of brief electric pulses to kill cells by disrupting membrane integrity. Electrochemotherapy (ECT) uses lower numbers of sub-lethal electric pulses to disrupt membranes for improved drug uptake. Malignant glioma (MG) brain tumors are difficult to treat due to diffuse peripheral margins into healthy neural tissue. Here, in vitro experimental data and numerical simulations investigate the feasibility for IRE-relevant pulse protocols with adjuvant ECT drugs to enhance MG treatment. Cytotoxicity curves were produced on two glioma cell lines in vitro at multiple pulse strengths and drug doses with Bleomycin or Carboplatin. Pulses alone increased cytotoxicity with higher pulse numbers and strengths, reaching >90% by 800 V/cm with 90 pulses. Chemotherapeutic addition increased cytotoxicity by >50% for 1 ng/mL concentrations of either drug relative to 80 pulses alone with J3T cells at electric fields ≥400 V/cm. In addition to necrosis, transmission electron microscopy visualizes apoptotic morphological changes and Hoescht 33342 staining shows apoptotic cell fractions varying with electric field and drug dose relative to controls. Numerically simulated treatment volumes in a canine brain show IRE combined with ECT expands therapeutic volume by 2.1–3.2 times compared to IRE alone.

Keywords

Combined therapy Non-thermal focal ablation Brain cancer IRE ECT Numerical modeling Minimally invasive surgery Multimodality oncology Targeted therapy 

Abbreviations

IRE

Irreversible electroporation

ECT

Electrochemotherapy

BBB

Blood–brain-barrier

Notes

Acknowledgments

This work was supported by the Coulter Foundation, NSF CAREER Award CBET-1055913, and Whitaker International Scholars Program. The authors thank Kathy Lowe for assistance with cell morphology and histology work.

Conflict of Interest

REN, JHR, PAG, RVD, JLR: Patent holders of “Irreversible Electroporation to Treat Aberrant Masses,” and have pending patents in the area of irreversible electroporation in general, but which does not directly relate to the content submitted here. RVD provides minimal consulting and has received research funding in the area of numerical modeling of electric fields. This manuscript has not been previously published, in whole or in part, nor is it concurrently under consideration elsewhere.

References

  1. 1.
    Agerholm-Larsen, B., H. K. Iversen, P. Ibsen, J. M. Moller, F. Mahmood, et al. Preclinical validation of electrochemotherapy as an effective treatment for brain tumors. Cancer Res. 71:3753–3762, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmed, M., C. L. Brace, F. T. Lee, and S. N. Goldberg. Principles of and advances in percutaneous ablation. Radiology 258:351–369, 2011.PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Sakere, B., F. Andre, C. Bernat, E. Connault, P. Opolon, et al. Tumor ablation with irreversible electroporation. PLoS One 2:e1135, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Au, J. T., J. Wong, A. Mittra, S. Carpenter, D. Haddad, et al. Irreversible electroporation is a surgical ablation technique that enhances gene transfer. Surgery 150:474–479, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Cheung, W., H. Kavnoudias, S. Roberts, B. Szkandera, W. Kemp, et al. Irreversible electroporation for unresectable hepatocellular carcinoma: initial experience and review of safety and outcomes. Technol. Cancer Res. Treat. 12:233–241, 2013.PubMedGoogle Scholar
  6. 6.
    Davalos, R., L. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Duck, F. A. Physical properties of tissue: a comprehensive reference book. New York: Academic Press, 1990.Google Scholar
  8. 8.
    Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53:1409–1415, 2006.PubMedCrossRefGoogle Scholar
  9. 9.
    Foster, K. R., and H. P. Schwan. Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17:25–104, 1989.PubMedGoogle Scholar
  10. 10.
    Gabriel, S., R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251–2269, 1996.PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia, P. A., T. Pancotto, J. H. Rossmeisl, Jr., N. Henao-Guerrero, N. R. Gustafson, et al. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol. Cancer Res. Treat. 10:73–83, 2011.PubMedGoogle Scholar
  12. 12.
    Garcia, P., J. Rossmeisl, R. Neal, T. Ellis, J. Olson, et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236:127–136, 2010.PubMedCrossRefGoogle Scholar
  13. 13.
    Garcia, P. A., J. H. Rossmeisl, Jr., J. L. Robertson, J. D. Olson, A. J. Johnson, et al. 7.0-T magnetic resonance imaging characterization of acute blood–brain-barrier disruption achieved with intracranial irreversible electroporation. PLoS ONE 7:e50482, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Garrido, W., M. Munoz, R. San Martin, and C. Quezada. FK506 confers chemosensitivity to anticancer drugs in glioblastoma multiforme cells by decreasing the expression of the multiple resistance-associated protein-1. Biochem. Biophys. Res. Commun. 411:62–68, 2011.PubMedCrossRefGoogle Scholar
  15. 15.
    Heller, R., M. J. Jaroszeski, D. S. Reintgen, C. A. Puleo, R. C. DeConti, et al. Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin. Cancer 83:148–157, 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Hjouj, M., D. Last, D. Guez, D. Daniels, S. Sharabi, et al. MRI study on reversible and irreversible electroporation induced blood–brain barrier disruption. PLoS ONE 7:e42817, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hochberg, F. H., and A. Pruitt. Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911, 1980.PubMedCrossRefGoogle Scholar
  18. 18.
    Jarm, T., M. Cemazar, D. Miklavcic, and G. Sersa. Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev. Anticancer Ther. 10:729–746, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee, E. W., C. T. Loh, and S. T. Kee. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol. Cancer Res. Treat. 6:287–293, 2007.PubMedGoogle Scholar
  20. 20.
    Linnert, M., and J. Gehl. Bleomycin treatment of brain tumors: an evaluation. Anticancer Drugs 20:157–164, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta 1523:73–83, 2000.PubMedCrossRefGoogle Scholar
  22. 22.
    Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Mir, L. M., and S. Orlowski. Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35:107–118, 1999.PubMedCrossRefGoogle Scholar
  24. 24.
    Mirimanoff, R. O., T. Gorlia, W. Mason, M. J. Van den Bent, R. D. Kortmann, et al. Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J. Clin. Oncol. 24:2563–2569, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Neal, II, R. E., W. Cheung, H. Kavnoudias, and K. R. Thomson. Spectrum of imaging and characteristics for liver tumors treated with irreversible electroporation. J. Biomed. Sci. Eng. 5:813–818, 2012.CrossRefGoogle Scholar
  26. 26.
    Neal, II, R. E., P. A. Garcia, J. L. Robertson, and R. V. Davalos. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59:1076–1085, 2012.PubMedCrossRefGoogle Scholar
  27. 27.
    Neal, II, R. E., J. H. Rossmeisl, Jr., P. A. Garcia, O. I. Lanz, N. Henao-Guerrero, et al. Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J. Clin. Oncol. 29:e372–e377, 2011.PubMedCrossRefGoogle Scholar
  28. 28.
    Onik, G., P. Mikus, and B. Rubinsky. Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6:295–300, 2007.PubMedGoogle Scholar
  29. 29.
    Prados, M. D., and V. Levin. Biology and treatment of malignant glioma. Semin. Oncol. 27:1–10, 2000.PubMedGoogle Scholar
  30. 30.
    Qian, J., G. S. Feng, and T. Vogl. Combined interventional therapies of hepatocellular carcinoma. World J. Gastroenterol. 9:1885–1891, 2003.PubMedGoogle Scholar
  31. 31.
    Roux, S., C. Bernat, B. Al-Sakere, F. Ghiringhelli, P. Opolon, et al. Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunol. Immunother. 57:1291–1300, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Rubinsky, J., G. Onik, P. Mikus, and B. Rubinsky. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol. 180:2668–2674, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Sabel, M. S. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 58:1–11, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Salford, L. G., B. R. Persson, A. Brun, C. P. Ceberg, P. C. Kongstad, et al. A new brain tumour therapy combining bleomycin with in vivo electropermeabilization. Biochem. Biophys. Res. Commun. 194:938–943, 1993.PubMedCrossRefGoogle Scholar
  35. 35.
    Sersa, G., T. Jarm, T. Kotnik, A. Coer, M. Podkrajsek, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer. 98:388–398, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Sersa, G., D. Miklavcic, M. Cemazar, Z. Rudolf, G. Pucihar, et al. Electrochemotherapy in treatment of tumours. Eur. J. Surg. Oncol. 34:232–240, 2008.PubMedCrossRefGoogle Scholar
  37. 37.
    Thomson, K. R., W. Cheung, S. J. Ellis, D. Federman, H. Kavnoudias, et al. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 22:611–621, 2011.PubMedCrossRefGoogle Scholar
  38. 38.
    Venkatesan, A. M., B. J. Wood, and D. A. Gervais. Percutaneous ablation in the kidney. Radiology 261:375–391, 2011.PubMedCrossRefGoogle Scholar
  39. 39.
    Yordanova, Y. N., S. Moritz-Gasser, and H. Duffau. Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. Clinical article. J. Neurosurg. 115:232–239, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • R. E. NealII
    • 1
    • 2
  • J. H. RossmeislJr.
    • 3
  • V. D’Alfonso
    • 3
  • J. L. Robertson
    • 4
  • P. A. Garcia
    • 1
  • S. Elankumaran
    • 5
  • R. V. Davalos
    • 1
  1. 1.Bioelectromechanical Systems LabVirginia Tech – Wake Forest School of Biomedical Engineering and SciencesBlacksburgUSA
  2. 2.Radiology Research UnitThe Alfred HospitalMelbourneAustralia
  3. 3.Neurology/Neurosurgery Service and Center for Comparative OncologyVA-MD Regional College of Veterinary MedicineBlacksburgUSA
  4. 4.Cancer Engineering GroupVirginia Tech – Wake Forest School of Biomedical Engineering and SciencesBlacksburgUSA
  5. 5.Department of Biomedical Sciences and PathobiologyVA-MD Regional College of Veterinary MedicineBlacksburgUSA

Personalised recommendations