Annals of Biomedical Engineering

, Volume 42, Issue 2, pp 368–387 | Cite as

Computational Biorheology of Human Blood Flow in Health and Disease

  • Dmitry A. Fedosov
  • Ming Dao
  • George Em KarniadakisEmail author
  • Subra Suresh


Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia.


Hematologic disorders Dissipative particle dynamics Coarse-graining Malaria Sickle cell anemia 



This work was supported by NIH and the new Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4), sponsored by DOE. Simulations were performed at the DOE supercomputing centers via an INCITE DOE award, and at the Jülich supercomputing center. Dmitry A. Fedosov acknowledges funding by the Alexander von Humboldt Foundation. MD and SS acknowledge partial support from the Singapore-MIT Alliance for Research and Technology (SMART) Center.


  1. 1.
    Abbitt, K. B., and G. B. Nash. Rheological properties of the blood influencing selectin-mediated adhesion of flowing leukocytes. Am. J. Physiol. 285:H229–H240, 2003.Google Scholar
  2. 2.
    Abkarian, M., M. Faivre, and A. Viallat. Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98:188302, 2007.PubMedGoogle Scholar
  3. 3.
    Abkarian, M., M. Faivre, R. Horton, K. Smistrup, C. A. Best-Popescu, and H. A. Stone. Cellular-scale hydrodynamics. Biomed. Mater. 3:034011, 2008.PubMedGoogle Scholar
  4. 4.
    Abkarian, M., C. Lartigue, and A. Viallat. Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88:068103, 2002.PubMedGoogle Scholar
  5. 5.
    Alizadehrad, D., Y. Imai, K. Nakaaki, T. Ishikawa, and T. Yamaguchi. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. J. Biomech. 45:2684–2689, 2012.PubMedGoogle Scholar
  6. 6.
    Allen, M. P., and D. J. Tildesley. Computer Simulation of Liquids. New York: Clarendon Press, 1987.Google Scholar
  7. 7.
    AlMomani, T., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann. Biomed. Eng. 36:905–920, 2008.PubMedGoogle Scholar
  8. 8.
    Antia, M., T. Herricks, and P. K. Rathod. Microfluidic modeling of cell–cell interactions in malaria pathogenesis. PLoS Pathog. 3:939–945, 2007.Google Scholar
  9. 9.
    Bagchi, P. Mesoscale simulation of blood flow in small vessels. Biophys. J. 92:1858–1877, 2007.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Bagchi, P., and R. M. Kalluri. Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling. J. Fluid Mech. 669:498–526, 2011.Google Scholar
  11. 11.
    Bagchi, P., A. S. Popel, and P. C. Johnson. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127:1070–1080, 2005.PubMedGoogle Scholar
  12. 12.
    Bagge, U., and R. Karlsson. Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc. Res. 20:92–95, 1980.PubMedGoogle Scholar
  13. 13.
    Bäumler, H., E. Donath, A. Krabi, W. Knippel, H. Budde, and A. Kiesewetter. Electrophoresis of human red blood cells and platelets: evidence for depletion of dextran. Biorheology 33:333–351, 1996.PubMedGoogle Scholar
  14. 14.
    Beck, W. S. (ed.). Hematology, 5th ed. Cambridge: MIT Press, 1991.Google Scholar
  15. 15.
    Bow, H., I. V. Pivkin, M. Diez-Silva, S. J. Goldfless, M. Dao, J. C. Niles, S. Suresh, and J. Han. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073, 2011.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Brooks, D. E. The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. J. Colloid Interface Sci. 43:700–713, 1973.Google Scholar
  17. 17.
    Bugliarello, G., and J. Sevilla. Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7:85–107, 1970.PubMedGoogle Scholar
  18. 18.
    Byun, H. S., T. Hillman, J. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. Dasari, S. Suresh, and Y.-K. Park. Optical measurements of biomechanical properties of individual erythrocytes from a sickle patient. Acta Biomater. 8:4130–4138, 2012.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Cantat, I., and C. Misbah. Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83:880–883, 1999.Google Scholar
  20. 20.
    Casson, N. Rheology of Disperse Systems. New York: Pergamon Press, 1992.Google Scholar
  21. 21.
    Chaudhuri, O., S. Parekh, W. Lam, and D. Fletcher. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat. Methods 6:383–387, 2009.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Chien, S., and K.-M. Jan. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc. Res. 5:155–166, 1973.PubMedGoogle Scholar
  23. 23.
    Chien, S., S. Usami, R. J. Dellenback, M. I. Gregersen, L. B. Nanninga, and N. M. Guest. Blood viscosity: influence of erythrocyte aggregation. Science 157:829–831, 1967.Google Scholar
  24. 24.
    Chien, S., S. Usami, R. J. Kellenback, and M. I. Gregersen. Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology. Am. J. Physiol. 219:143–153, 1970.PubMedGoogle Scholar
  25. 25.
    Chien, S., S. Usami, H. M. Taylor, J. L. Lundberg, and M. I. Gregersen. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21:81–87, 1996.Google Scholar
  26. 26.
    Clausen, J. R., D. A. Reasor, Jr., and C. K. Aidun. The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J. Fluid Mech. 685:202–234, 2011.Google Scholar
  27. 27.
    Cokelet, G., E. W. Merrill, E. R. Gilliland, H. Shin, A. Britten, and J. R. E. Wells. The rheology of human blood-measurement near and at zero shear rate. Trans. Soc. Rheol. 7:303–317, 1963.Google Scholar
  28. 28.
    Cokelet, G. R., and H. L. Goldsmith. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ. Res. 68:1–17, 1991.PubMedGoogle Scholar
  29. 29.
    Copley, A. L., C. R. Huang, and R. G. King. Rheogoniometric studies of whole human blood at shear rates from 1,000-0.0009 sec−1. Part I. Experimental findings. Biorheology 10:17–22, 1973.PubMedGoogle Scholar
  30. 30.
    Cranston, H. A., C. W. Boylan, G. L. Carroll, S. P. Sutera, J. R. Williamson, I. Y. Gluzman, and D. J. Krogstad. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–403, 1984.PubMedGoogle Scholar
  31. 31.
    Cravalho, P., M. Diez-Silva, H. Chen, M. Dao, and S. Suresh. Cytoadherence of erythrocytes invaded by Plasmodium falciparum: quantitative contact-probing of a human malaria receptor. Acta Biomater. 9:6349–6359, 2013.Google Scholar
  32. 32.
    Crowl, L., and A. L. Fogelson. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int. J. Numer. Methods Biomed. Eng. 26:471–487, 2010.Google Scholar
  33. 33.
    Crowl, L., and A. L. Fogelson. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech. 676:348–375, 2011.Google Scholar
  34. 34.
    Dao, M., J. Li, and S. Suresh. Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26:1232–1244, 2006.Google Scholar
  35. 35.
    Dao, M., C. T. Lim, and S. Suresh. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51:2259–2280, 2003.Google Scholar
  36. 36.
    Diez-Silva, M., M. Dao, J. Han, C.-T. Lim, and S. Suresh. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35:382–388, 2010.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Diez-Silva, M., Y.-K. Park, S. Huang, H. Bow, O. Mercereau-Puijalon, G. Deplaine, C. Lavazec, S. Perrot, S. Bonnefoy, M. S. Feld, J. Han, M. Dao, and S. Suresh. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci. Rep. 2:614, 2012.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Discher, D. E., D. H. Boal, and S. K. Boey. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75:1584–1597, 1998.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Discher, D. E., N. Mohandas, and E. A. Evans. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035, 1994.PubMedGoogle Scholar
  40. 40.
    Doddi, S. K., and P. Bagchi. Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int. J. Multiphase Flow 34:966–986, 2008.Google Scholar
  41. 41.
    Doddi, S. K., and P. Bagchi. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318, 2009.Google Scholar
  42. 42.
    Dupin, M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.Google Scholar
  43. 43.
    Dupin, M. M., I. Halliday, C. M. Care, and L. L. Munn. Lattice boltzmann modeling of blood cell dynamics. Int. J. Comput. Fluid Dyn. 22:481–492, 2008.Google Scholar
  44. 44.
    Dzwinel, W., K. Boryczko, and D. A. Yuen. A discrete-particle model of blood dynamics in capillary vessels. J. Colloid Interface Sci. 258:163–173, 2003.PubMedGoogle Scholar
  45. 45.
    Eckstein, E. C., A. W., and F. J. Millero III. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc. Res. 36:31–39, 1988.PubMedGoogle Scholar
  46. 46.
    Eggleton, C. D., and A. S. Popel. Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10:1834, 1998.Google Scholar
  47. 47.
    Enden, G., and A. S. Popel. A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng. 116:79–88, 1994.PubMedGoogle Scholar
  48. 48.
    Enderle, T., T. Ha, D. F. Ogletree, D. S. Chemla, C. Magowan, S. Weiss. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc. Natl Acad. Sci. U.S.A. 94:520–525, 1997.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Ermak, D. L., and J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69:1352–1360, 1978.Google Scholar
  50. 50.
    Espanol, P., and M. Revenga. Smoothed dissipative particle dynamics. Phys. Rev. E 67:026705, 2003.Google Scholar
  51. 51.
    Espanol, P., and P. Warren. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30:191–196, 1995.Google Scholar
  52. 52.
    Evans, E. A., and R. Skalak. Mechanics and Thermodynamics of Biomembranes. Boca Raton, FL: CRC Press, 1980.Google Scholar
  53. 53.
    Fahraeus, R. The suspension stability of blood. Physiol. Rev 9:241–274, 1929.Google Scholar
  54. 54.
    Fahraeus, R. The influence of the rouleau formation of the erythrocytes on the rheology of the blood. Acta Med. Scand. 161:151–165, 1958.PubMedGoogle Scholar
  55. 55.
    Fahraeus, R., and T. Lindqvist. Viscosity of blood in narrow capillary tubes. Am. J. Phys. 96:562–568, 1931.Google Scholar
  56. 56.
    Fedosov, D. A., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–2225, 2010.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Fedosov, D. A., B. Caswell, and G. E. Karniadakis. Systematic coarse-graining of spectrin-level red blood cell models. Comput. Methods Appl. Mech. Eng. 199:1937–1948, 2010.Google Scholar
  58. 58.
    Fedosov, D. A., B. Caswell, and G. E. Karniadakis. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys. J. 100:2084–2093, 2011.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Fedosov, D. A., B. Caswell, A. S. Popel, and G. E. Karniadakis. Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628, 2010.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Fedosov, D. A., B. Caswell, S. Suresh, and G. E. Karniadakis. Quantifying the biophysical characteristics of Plasmodium falciparum-parasitized red blood cells in microcirculation. Proc. Natl Acad. Sci. U.S.A. 108:35–39, 2011.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Fedosov, D. A., J. Fornleitner, and G. Gompper. Margination of white blood cells in microcapillary flow. Phys. Rev. Lett. 108:028104, 2012.PubMedGoogle Scholar
  62. 62.
    Fedosov, D. A., H. Noguchi, and G. Gompper. Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol., 2013. DOI:10.1007/s10237-013-0497-9.Google Scholar
  63. 63.
    Fedosov, D. A., W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis. Predicting human blood viscosity in silico. Proc. Natl Acad. Sci. U.S.A. 108:11772–11777, 2011.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Finger, E. B., K. D. Puri, R. Alon, M. B. Lawrence, U. H. von Andrian, and T. A. Springer. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature (London) 379:266–269, 1996.Google Scholar
  65. 65.
    Firrell, J. C., and H. H. Lipowsky. Leukocyte margination and deformation in mesenteric venules of rat. Am. J. Physiol. 256:H1667–H1674, 1989.PubMedGoogle Scholar
  66. 66.
    Fischer, T. M. Shape memory of human red blood cells. Biophys. J. 86:3304–3313, 2004.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Freund, J. B. Leukocyte margination in a model microvessel. Phys. Fluids 19:023301, 2007.Google Scholar
  68. 68.
    Freund, J. B., and M. M. Orescanin. Cellular flow in a small blood vessel. J. Fluid Mech. 671:466–490, 2011.Google Scholar
  69. 69.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer, 1993.Google Scholar
  70. 70.
    Gaehtgens, P., C. Dührssen, and K. H. Albrecht. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells 6:799–817, 1980.PubMedGoogle Scholar
  71. 71.
    Gidaspow, D., and J. Huang. Kinetic theory based model for blood flow and its viscosity. Ann. Biomed. Eng. 38:1534–1545, 2009.Google Scholar
  72. 72.
    Goldsmith, H. L., G. R. Cokelet, and P. Gaehtgens. Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:H1005–H1015, 1989.PubMedGoogle Scholar
  73. 73.
    Goldsmith, H. L., and S. Spain. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27:204–222, 1984.PubMedGoogle Scholar
  74. 74.
    Gompper, G., T. Ihle, D. M. Kroll, and R. G. Winkler. Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv. Polym. Sci. 221:1–87, 2009.Google Scholar
  75. 75.
    Groot, R. D., and P. B. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–4435, 1997.Google Scholar
  76. 76.
    Henon, S., G. Lenormand, A. Richert, and F. Gallet. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76:1145–1151, 1999.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl Acad. Sci. U.S.A. 104:20496–20500, 2007.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Holm, S. H., J. P. Beech, M. P. Barrett, and J. O. Tegenfeldt. Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332, 2011.PubMedGoogle Scholar
  79. 79.
    Hoogerbrugge, P. J., and J. M. V. A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19:155–160, 1992.Google Scholar
  80. 80.
    Hou, H. W., A. A. S. Bhagat, A. G. L. Chong, P. Mao, K. S. W. Tan, J. Han, C. T. Lim. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613, 2010.PubMedGoogle Scholar
  81. 81.
    Iordan A, Duperray A, Verdier C (2008) Fractal approach to the rheology of concentrated suspensions. Phys. Rev. E 77:011911Google Scholar
  82. 82.
    Itoh, T., S. Chien, and S. Usami. Effects of hemoglobin concentration on deformability of individual sickle cells after deoxygenation. Blood 85:2245–2253, 1995.PubMedGoogle Scholar
  83. 83.
    Jain, A., and L. L. Munn. Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4:e7104, 2009.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Janoschek, F., F. Toschii, and J. Harting. Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E 82:056710, 2010.Google Scholar
  85. 85.
    Ju, M., S. S. Ye, B. Namgung, S. Cho, H. T. Low, H. L. Leo, and S. Kim. A review of numerical methods for red blood cell flow simulation. Computer Methods Biomech. Biomed. Eng., 2013. DOI:10.1080/10255842.2013.783574Google Scholar
  86. 86.
    Kaul, D. K., M. E. Fabry, P. Windisch, S. Baez, and R. L. Nagel. Erythrocytes in sickle-cell-anemia are heterogeneous in their rheological and hemodynamic characteristics. J. Clin. Invest. 72:22–31, 1983.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Kaul, D. K., and H. Xue. Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood 77:1353–1361, 1991.PubMedGoogle Scholar
  88. 88.
    Kim, S., L. R. Long, A. S. Popel, M. Intaglietta, and P. C. Johnson. Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Physiol. 293:H1526–H1535, 2007.Google Scholar
  89. 89.
    Kim, S., P. K. Ong, O. Yalcin, M. Intaglietta, and P. C. Johnson. The cell-free layer in microvascular blood flow. Biorheology 46:181–189, 2009.PubMedGoogle Scholar
  90. 90.
    Kumar, A., and M. D. Graham. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter 8:10536–10548, 2012.Google Scholar
  91. 91.
    Kumar, A., and M. D. Graham. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett. 109:108102, 2012.PubMedGoogle Scholar
  92. 92.
    LaCelle, P. L. Oxygen delivery to muscle cells during capillary vascular occlusion by sickle erythrocytes. Blood Cells 3:263–272, 1977.Google Scholar
  93. 93.
    Lei, H., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Blood flow in small tubes: quantifying the transition to the non-continuum regime. J. Fluid Mech. 722:214–239, 2013.Google Scholar
  94. 94.
    Lei, H., and G. E. Karniadakis. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys. J. 102:185–194, 2012.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Lei, H., and G. E. Karniadakis. Probing vaso-occlusion phenomena in sickle cell anemia via mesoscopic simulations. Proc. Natl Acad. Sci. U.S.A. 110:11326–11330, 2013.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88:3707–3719PubMedCentralPubMedGoogle Scholar
  97. 97.
    Li, X., P. M. Vlahovska, and G. E. Karniadakis. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9:28–37, 2013.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Liu, Y., and W. K. Liu. Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220:139–154, 2006.Google Scholar
  99. 99.
    Lucy, L. B. A numerical approach to testing the fission hypothesis. Astronom. J. 82:1013–1024, 1977.Google Scholar
  100. 100.
    MacMeccan, R. M., J. R. Clausen, G. P. Neitzel, and C. K. Aidun. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech. 618:13–39, 2009.Google Scholar
  101. 101.
    Maeda, N., Y. Suzuki, J. Tanaka, and N. Tateishi. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. 271:H2454–H2461, 1996.PubMedGoogle Scholar
  102. 102.
    Malevanets, A., and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys. 110:8605–8613, 1999.Google Scholar
  103. 103.
    Mattice, W. L., and U. W. Suter. Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems. New York: Wiley Interscience, 1994.Google Scholar
  104. 104.
    McWhirter, J. L., H. Noguchi, and G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. U.S.A. 106:6039–6043, 2009.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Melchionna, S. A model for red blood cells in simulations of large-scale blood flows. Macromol. Theory Simul. 20:548–561, 2011.Google Scholar
  106. 106.
    Merrill, E. W., E. R. Gilliland, G. Cokelet, H. Shin, A. Britten, J. R. E. Wells. Rheology of human blood near and at zero flow. Biophys. J. 3:199–213, 1963.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Merrill, E. W., E. R. Gilliland, T. S. Lee, and E. W. Salzman. Blood rheology: effect of fibrinogen deduced by addition. Circ. Res. 18:437–446, 1966.PubMedGoogle Scholar
  108. 108.
    Messlinger, S., B. Schmidt, H. Noguchi, and G. Gompper. Dynamical regimes and hydrodynamic lift of viscous vesicles under shear. Phys. Rev. E 80:011901, 2009.Google Scholar
  109. 109.
    Mills, J. P., M. Diez-Silva, D. J. Quinn, M. Dao, M. J. Lang, K. S. W. Tan, C. T. Lim, G. Milon, P. H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh. Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc. Natl Acad. Sci. U.S.A. 104:9213–9217, 2007.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Monaghan, J. J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 68:1703–1759, 2005.Google Scholar
  111. 111.
    Murata, T. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes. Biorheology 33:267–283, 1996.PubMedGoogle Scholar
  112. 112.
    Neu, B., and H. J. Meiselman. Depletion-mediated red blood cell aggregation in polymer solutions. Biophys. J. 83:2482–2490, 2002.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Noguchi, H., and G. Gompper. Fluid vesicles with viscous membranes in shear flow. Phys. Rev. Lett. 93:258102, 2004.PubMedGoogle Scholar
  114. 114.
    Noguchi, H., and G. Gompper. Dynamics of fluid vesicles in shear flow: effect of the membrane viscosity and thermal fluctuations. Phys. Rev. E 72:011901, 2005.Google Scholar
  115. 115.
    Noguchi, H., and G. Gompper. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl Acad. Sci. U.S.A. 102:14159–14164, 2005.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Pan, W., B. Caswell, and G. E. Karniadakis. A low-dimensional model for the red blood cell. Soft Matter 6:4366–4376, 2010.Google Scholar
  117. 117.
    Pan, W., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Predicting dynamics and rheology of blood flow: a comparative study of multiscale and low-dimensional models of red blood cells. Microvasc. Res. 82:163–170, 2011.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Park, Y. K., M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. U.S.A. 105:13730–13735, 2008.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Pearson, M. J., and H. H. Lipowsky. Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am. J. Physiol. 279:H1460–H1471, 2000.Google Scholar
  120. 120.
    Peng, Z., X. Li, I. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh. Lipid-bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl Acad. Sci. U.S.A. 110:13356–13361, 2013.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Picart, C., J. M. Piau, and H. Galliard. Human blood shear yield stress and its hematocrit dependence. J. Rheol. 42:1–12, 1998.Google Scholar
  122. 122.
    Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.PubMedGoogle Scholar
  123. 123.
    Popel, A. S., and P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69, 2005.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Popescu, G., Y.-K. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld. Coherence properties of red blood cell membrane motions. Phys. Rev. E 76:031902, 2007.Google Scholar
  125. 125.
    Pozrikidis, C. Numerical simulation of cell motion in tube flow. Ann. Biomed. Eng. 33:165–178, 2005.PubMedGoogle Scholar
  126. 126.
    Pribush, A., D. Zilberman-Kravits, and N. Meyerstein. The mechanism of the dextran-induced red blood cell aggregation. Eur. Biophys. J. 36:85–94, 2007.PubMedGoogle Scholar
  127. 127.
    Pries, A. R., K. Ley, M. Claassen, and P. Gaehtgens. Red cell distribution at microvascular bifurcations. Microvasc. Res. 38:81–101, 1989.PubMedGoogle Scholar
  128. 128.
    Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.PubMedGoogle Scholar
  129. 129.
    Pries, A. R., T. W. Secomb, and P. Gaehtgens. Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am. J. Physiol. 269:H1713–H1722, 1995.PubMedGoogle Scholar
  130. 130.
    Pries, A. R., T. W. Secomb, and P. Gaehtgens. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32:654–667, 1996.PubMedGoogle Scholar
  131. 131.
    Puig-de Morales-Marinkovic, M., K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh. Viscoelasticity of the human red blood cell. Am. J. Physiol. 293:C597–C605, 2007.Google Scholar
  132. 132.
    Raventos-Suarez, C., D. Kaul, and R. Nagel. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. U.S.A. 82:3829–3833, 1985.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Reasor, Jr., D. A., M. Mehrabadi, D. N. Ku, and C. K. Aidun. Determination of critical parameters in platelet margination. Ann. Biomed. Eng. 41:238–249, 2013.PubMedGoogle Scholar
  134. 134.
    Reinke, W., P. Gaehtgens, and P. C. Johnson. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Physiol. 253:H540–H547, 1987.PubMedGoogle Scholar
  135. 135.
    Rosenbluth, M., W. Lam, and D. Fletcher. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:1062–1070, 2008.PubMedGoogle Scholar
  136. 136.
    Samsel, R. W., and A. S. Perelson. Kinetics of rouleau formation: I. A mass action approach with geometric features. Biophys. J. 37:493–514, 1982.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Schmid-Schönbein, H., and R. E. Wells. Rheological properties of human erythrocytes and their influence upon the “anomalous” viscosity of blood. Ergeb. Physiol. Biol. Chem. Exper. Pharmakol. 63:146–219, 1971.Google Scholar
  138. 138.
    Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415–428, 2001.PubMedGoogle Scholar
  139. 139.
    Shelby, J. P., J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. U.S.A. 100:14618–14622, 2003.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Skalak, R., and P. I. Branemark. Deformation of red blood cells in capillaries. Science 164:717–719, 1969.PubMedGoogle Scholar
  141. 141.
    Skalak, R., S. R. Keller, and T. W. Secomb. Mechanics of blood flow. J. Biomech. Eng. 103:102–115, 1981.PubMedGoogle Scholar
  142. 142.
    Skotheim, J. M., and T. W. Secomb. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98:078301, 2007.PubMedGoogle Scholar
  143. 143.
    Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57:827–872, 1995.PubMedGoogle Scholar
  144. 144.
    Steffen, P., C. Verdier, and C. Wagner. Quantification of depletion-induced adhesion of red blood cells. Phys. Rev. Lett. 110:018102, 2013.PubMedGoogle Scholar
  145. 145.
    Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Oxford University Press, 2001.Google Scholar
  146. 146.
    Sun, C., C. Migliorini, and L. L. Munn. Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys. J. 85:208–222, 2003.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Suresh, S., J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1:15–30, 2005.PubMedGoogle Scholar
  148. 148.
    Suzuki, Y., N. Tateishi, M. Soutani, and N. Maeda. Deformation of erythrocytes in microvessels and glass capillaries: effect of erythrocyte deformability. Microcirculation 3:49–57, 1996.PubMedGoogle Scholar
  149. 149.
    Tangelder, G. J., H. C. Teirlinck, D. W. Slaaf, and R. S. Reneman. Distribution of blood platelets flowing in arterioles. Am. J. Physiol. 248:H318–H323, 1985.PubMedGoogle Scholar
  150. 150.
    Thurston, G. B. Viscoelastic properties of blood and blood analogs. In Advances in Hemodynamics and Hemorheology, Vol. 1, edited by T. V. How. Greenwich, CT: JAI Press, 1996, pp. 1–30.Google Scholar
  151. 151.
    Tilles, A. W., and E. C. Eckstein. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res. 33:211–223, 1987.PubMedGoogle Scholar
  152. 152.
    Tokarev, A. A., A. A. Butylin, and F. I. Ataullakhanov. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. 100:799–808, 2011.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Tokarev, A. A., A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I. Ataullakhanov. Finite platelet size could be responsible for platelet margination effect. Biophys. J. 101:1835–1843, 2011PubMedCentralPubMedGoogle Scholar
  154. 154.
    Tomaiuolo, G., V. Preziosi, M. Simeone, S. Guido, R. Ciancia, V. Martinelli, C. Rinaldi, B. Rotoli. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro. Ann Ist Super Sanita 43:186–192, 2007.PubMedGoogle Scholar
  155. 155.
    Tomaiuolo, G., M. Simeone, V. Martinelli, B. Rotoli, and S. Guido. Red blood cell deformation in microconfined flow. Soft Matter 5:3736–3740, 2009.Google Scholar
  156. 156.
    Tousia, N., B. Wang, K. Pant, M. F. Kiani, and B. Prabhakarpandian. Preferential adhesion of leukocytes near bifurcations is endothelium independent. Microvasc. Res. 80:384–388, 2010.Google Scholar
  157. 157.
    Uijttewaal, W. S., E. J. Nijhof, P. J. Bronkhorst, E. Den Hartog, and R. M. Heethaar. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am. J. Physiol. 264:H1239–H1244, 1993.PubMedGoogle Scholar
  158. 158.
    Wang,T., T.-W. Pan, Z. W. Xing, and R. Glowinski. Numerical simulation of rheology of red blood cell rouleaux in microchannels. Phys. Rev. E 79:041916, 2009.Google Scholar
  159. 159.
    Waugh, R., and E. A. Evans. Thermoelasticity of red blood cell membrane. Biophys. J. 26:115–131, 1979.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.PubMedGoogle Scholar
  161. 161.
    Wendt, J. F. (ed.). Computational Fluid Dynamics, 3rd ed. Berlin: Springer, 2009.Google Scholar
  162. 162.
    Woldhuis, B., G. J. Tangelder, D. W. Slaaf, and R. S. Reneman. Concentration profile of blood platelets differs in arterioles and venules. Am. J. Physiol. 262:H1217–H1223, 1992.PubMedGoogle Scholar
  163. 163.
    Yamaguchi, S., T. Yamakawa, and H. Niimi. Cell-free plasma layer in cerebral microvessels. Biorheology 29:251–260, 1992.PubMedGoogle Scholar
  164. 164.
    Zhang, J., P. C. Johnson, and A. S. Popel. Red blood cell aggregation and dissociation in shear ows simulated by lattice Boltzmann method. J. Biomech. 41:47–55, 2008.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Zhao, H., A. H. G. Isfahani, L. N. Olson, and J. B. Freund. Molecular dynamics simulations of tethered membranes with periodic boundary conditions. J. Comput. Phys. 229:3726–3744, 2010.Google Scholar
  166. 166.
    Zhao, H., and E. S. G. Shaqfeh. Shear-induced platelet margination in a microchannel. Phys. Rev. E 83:061924, 2011.Google Scholar
  167. 167.
    Zhao, H., E. S. G. Shaqfeh, and V. Narsimhan. Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24:011902, 2012.Google Scholar
  168. 168.
    Zhao, Q., L. G. Durand, L. Allard, and G. Cloutier. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power. Ultrasound Med. Biol. 24:503–511, 1998.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Dmitry A. Fedosov
    • 1
  • Ming Dao
    • 2
  • George Em Karniadakis
    • 3
    Email author
  • Subra Suresh
    • 4
  1. 1.Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Division of Applied MathematicsBrown UniversityProvidenceUSA
  4. 4.Department of Materials Science and Engineering and Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations