Annals of Biomedical Engineering

, Volume 42, Issue 7, pp 1357–1372 | Cite as

Efficient and Scalable Expansion of Human Pluripotent Stem Cells Under Clinically Compliant Settings: A View in 2013

Article

Abstract

Human pluripotent stem cells (hPSCs) hold great promise for revolutionizing regenerative medicine for their potential applications in disease modeling, drug discovery, and cellular therapy. Many their applications require robust and scalable expansion of hPSCs, even under settings compliant to good clinical practices. Rapid evolution of media and substrates provided safer and more defined culture conditions for long-term expansion of undifferentiated hPSCs in either adhesion or suspension. With well-designed automatic systems or fully controlled bioreactors, production of a clinically relevant quantity of hPSCs could be achieved in the near future. The goal is to find a scalable, xeno-free, chemically defined, and economic culture system for clinical-grade expansion of hPSCs that complies the requirements of current good manufacturing practices. This review provides an updated overview of the current development and challenges on the way to accomplish this goal, including discussions on basic principles for bioprocess design, serum-free media, extracellular matric or synthesized substrate, microcarrier- or cell aggregate-based suspension culture, and scalability and practicality of equipment.

Keywords

Human pluripotent stem cells Large-scale expansion Cellular therapy Clinical trials 

References

  1. 1.
    Abbasalizadeh, S., M. R. Larijani, A. Samadian, and H. Baharvand. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng. Part C 18:831–851, 2012.CrossRefGoogle Scholar
  2. 2.
    Adamo, L., O. Naveiras, P. L. Wenzel, S. McKinney-Freeman, P. J. Mack, J. Gracia-Sancho, et al. Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–1135, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ahsan, T., and R. M. Nerem. Fluid shear stress promotes an endothelial-like phenotype during the early differentiation of embryonic stem cells. Tissue Eng. Part A 16:3547–3553, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Amit, M., I. Laevsky, Y. Miropolsky, K. Shariki, M. Peri, and J. Itskovitz-Eldor. Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat. Protoc. 6:572–579, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Amit, M., C. Shariki, V. Margulets, and J. Itskovitz-Eldor. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70:837–845, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Ausubel, L. J., P. M. Lopez, and L. A. Couture. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol. Biol. 767:147–159, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Bardy, J., A. K. Chen, Y. M. Lim, S. Wu, S. Wei, H. Weiping, et al. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng. Part C 19:166–180, 2013.CrossRefGoogle Scholar
  8. 8.
    Bar-Nur, O., H. A. Russ, S. Efrat, and N. Benvenisty. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9:17–23, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Beattie, G. M., A. D. Lopez, N. Bucay, A. Hinton, M. T. Firpo, C. C. King, and A. Hayek. Activin a maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495, 2005.PubMedCrossRefGoogle Scholar
  10. 10.
    Braam, S. R., L. Zeinstra, S. Litjens, D. Ward-van Oostwaard, S. van den Brink, L. van Laake, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26:2257–2265, 2008.Google Scholar
  11. 11.
    Cameron, C. M., W. S. Hu, and D. S. Kaufman. Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol. Bioeng. 94:938–948, 2006.PubMedCrossRefGoogle Scholar
  12. 12.
    Carlson Scholz, J. A., R. Garg, S. R. Compton, H. G. Allore, C. J. Zeiss, and E. M. Uchio. Poliomyelitis in mulv-infected icr-scid mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus. Comp. Med. 61:404–411, 2011.Google Scholar
  13. 13.
    Chen, A. K., S. Reuveny, and S. K. Oh. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnol. Adv. 2013. doi:10.1016/j.biotechadv.2013.03.006.
  14. 14.
    Chen, A. K., X. Chen, A. B. Choo, S. Reuveny, and S. K. Oh. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 7:97–111, 2011.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, V. C., S. M. Couture, J. Ye, Z. Lin, G. Hua, H. I. Huang, et al. Scalable GMP compliant suspension culture system for human es cells. Stem Cell Res. 8:388–402, 2012.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, G. K., D. R. Gulbranson, Z. G. Hou, J. M. Bolin, V. Ruotti, M. D. Probasco, et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8:424–U476, 2011.Google Scholar
  17. 17.
    Chen, T., D. Yuan, B. Wei, J. Jiang, J. Kang, K. Ling, et al. E-cadherin-mediated cell–cell contact is critical for induced pluripotent stem cell generation. Stem Cells 28:1315–1325, 2010.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheng, L., H. Hammond, Z. Ye, X. Zhan, and G. Dravid. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21:131–142, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Chou, B. K., P. Mali, X. Huang, Z. Ye, S. N. Dowey, L. M. Resar, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 21:518–529, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    da Cruz, L., F. K. Chen, A. Ahmado, J. Greenwood, and P. Coffey. Rpe transplantation and its role in retinal disease. Prog. Retin. Eye Res. 26:598–635, 2007.Google Scholar
  21. 21.
    Danen, E. H., P. Sonneveld, C. Brakebusch, R. Fassler, and A. Sonnenberg. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J. Cell Biol. 159:1071–1086, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Davies, N. L., D. A. Brindley, E. J. Culme-Seymour, and C. Mason. Streamlining cell therapy manufacture—from clinical to commercial scale. BioProcess Int. 10:24–29, 2012.Google Scholar
  23. 23.
    Derda, R., L. Li, B. P. Orner, R. L. Lewis, J. A. Thomson, and L. L. Kiessling. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem. Biol. 2:347–355, 2007.PubMedCrossRefGoogle Scholar
  24. 24.
    Diekman, B. O., N. Christoforou, V. P. Willard, H. Sun, J. Sanchez-Adams, K. W. Leong, and F. Guilak. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc. Natl Acad. Sci. U.S.A. 109:19172–19177, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Dimos, J. T., K. T. Rodolfa, K. K. Niakan, L. M. Weisenthal, H. Mitsumoto, W. Chung, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221, 2008.PubMedCrossRefGoogle Scholar
  26. 26.
    Dionigi, B., and D. O. Fauza. Autologous approaches to tissue engineering. In: The Stem Cell Research Community, Stembook. Cambridge, MA, 2008.Google Scholar
  27. 27.
    Dos Santos, F. F., P. Z. Andrade, C. L. da Silva, and J. M. Cabral. Bioreactor design for clinical-grade expansion of stem cells. Biotechnol. J. 8:644–654, 2013.PubMedCrossRefGoogle Scholar
  28. 28.
    Dowey, S. N., X. S. Huang, B. K. Chou, Z. H. Ye, and L. Z. Cheng. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat. Protoc. 7:2013–2021, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Drews, K., J. Jozefczuk, A. Prigione, and J. Adjaye. Human induced pluripotent stem cells—from mechanisms to clinical applications. J. Mol. Med. (Berl). 90:735–745, 2012.PubMedCrossRefGoogle Scholar
  30. 30.
    Engle, S. J., and D. Puppala. Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12:669–677, 2013.PubMedCrossRefGoogle Scholar
  31. 31.
    Fernandes, A. M., P. A. Marinho, R. C. Sartore, B. S. Paulsen, R. M. Mariante, L. R. Castilho, and S. K. Rehen. Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz. J. Med. Biol. Res. 42:515–522, 2009.PubMedGoogle Scholar
  32. 32.
    Furue, M. K., J. Na, J. P. Jackson, T. Okamoto, M. Jones, D. Baker, et al. Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc. Natl Acad. Sci. U.S.A. 105:13409–13414, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Garber, K. Inducing translation. Nat. Biotechnol. 31:483–486, 2013.PubMedCrossRefGoogle Scholar
  34. 34.
    Gerecht-Nir, S., S. Cohen, and J. Itskovitz-Eldor. Bioreactor cultivation enhances the efficiency of human embryoid body (HEB) formation and differentiation. Biotechnol. Bioeng. 86:493–502, 2004.PubMedCrossRefGoogle Scholar
  35. 35.
    Hagell, P., and P. Brundin. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J. Neuropathol. Exp. Neurol. 60:741–752, 2001.PubMedGoogle Scholar
  36. 36.
    Harb, N., T. K. Archer, and N. Sato. The rho-rock-myosin signaling axis determines cell–cell integrity of self-renewing pluripotent stem cells. Plos One 3, 2008.Google Scholar
  37. 37.
    Heng, B. C., J. Li, A. K. Chen, S. Reuveny, S. M. Cool, W. R. Birch, and S. K. Oh. Translating human embryonic stem cells from 2-dimensional to 3-dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem Cells Dev. 21:1701–1715, 2012.PubMedCrossRefGoogle Scholar
  38. 38.
    Higgins, J. M., D. A. Mandlebrot, S. K. Shaw, G. J. Russell, E. A. Murphy, Y. T. Chen, et al. Direct and regulated interaction of integrin alphaEbeta7 with E-cadherin. J. Cell Biol. 140:197–210, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hockemeyer, D., H. Wang, S. Kiani, C. S. Lai, Q. Gao, J. P. Cassady, et al. Genetic engineering of human pluripotent cells using tale nucleases. Nat. Biotechnol. 29:731–734, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Hovatta, O., M. Mikkola, K. Gertow, A. M. Stromberg, J. Inzunza, J. Hreinsson, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18:1404–1409, 2003.PubMedCrossRefGoogle Scholar
  41. 41.
    Hunt, C. J. Cryopreservation of human stem cells for clinical application: a review. Transfus. Med. Hemother. 38:107–123, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Hyun, I., O. Lindvall, L. Ahrlund-Richter, E. Cattaneo, M. Cavazzana-Calvo, G. Cossu, et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell 3:607–609, 2008.PubMedCrossRefGoogle Scholar
  43. 43.
    International Stem Cell Initiative Consortium, V. Akopian, P. W. Andrews, S. Beil, N. Benvenisty, J. Brehm, et al. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell. Dev. Biol. Anim. 46:247–258, 2010.Google Scholar
  44. 44.
    Irwin, E. F., R. Gupta, D. C. Dashti, and K. E. Healy. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 32:6912–6919, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Jing, D., A. Parikh, J. M. Canty, Jr., and E. S. Tzanakakis. Stem cells for heart cell therapies. Tissue Eng. Part B Rev. 14:393–406, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Kehoe, D. E., D. Jing, L. T. Lock, and E. S. Tzanakakis. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng. Part A 16:405–421, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Keirstead, H. S., G. Nistor, G. Bernal, M. Totoiu, F. Cloutier, K. Sharp, and O. Steward. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25:4694–4705, 2005.PubMedCrossRefGoogle Scholar
  48. 48.
    Kleinman, H. K., and G. R. Martin. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15:378–386, 2005.PubMedCrossRefGoogle Scholar
  49. 49.
    Kleinman, H. K., M. L. McGarvey, J. R. Hassell, V. L. Star, F. B. Cannon, G. W. Laurie, and G. R. Martin. Basement membrane complexes with biological activity. Biochemistry 25:312–318, 1986.PubMedCrossRefGoogle Scholar
  50. 50.
    Klim, J. R., L. Li, P. J. Wrighton, M. S. Piekarczyk, and L. L. Kiessling. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat. Methods 7:989–994, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Krawetz, R., J. T. Taiani, S. Liu, G. Meng, X. Li, M. S. Kallos, and D. E. Rancourt. Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng. Part C Methods 16:573–582, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Kusuma, S., Y. I. Shen, D. Hanjaya-Putra, P. Mali, L. Cheng, and S. Gerecht. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc. Natl Acad. Sci. U.S.A. 110:12601–12606, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lee, M. H., J. A. Arcidiacono, A. M. Bilek, J. J. Wille, C. A. Hamill, K. M. Wonnacott, et al. Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the United States. Tissue Eng. Part B Rev. 16:41–54, 2010.PubMedCrossRefGoogle Scholar
  54. 54.
    Li, Y., and T. Ma. Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. Biores. Open Access. 1:205–214, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Li, Y., S. Powell, E. Brunette, J. Lebkowski, and R. Mandalam. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol. Bioeng. 91:688–698, 2005.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu, Y., Z. Song, Y. Zhao, H. Qin, J. Cai, H. Zhang, et al. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem. Biophys. Res. Commun. 346:131–139, 2006.PubMedCrossRefGoogle Scholar
  57. 57.
    Lock, L. T., and E. S. Tzanakakis. Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng. Part A 15:2051–2063, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Loh, Y. H., S. Agarwal, I. H. Park, A. Urbach, H. Huo, G. C. Heffner, et al. Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Lu, J., R. Hou, C. J. Booth, S. H. Yang, and M. Snyder. Defined culture conditions of human embryonic stem cells. Proc. Natl Acad. Sci. U.S.A. 103:5688–5693, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Ludwig, T. E., M. E. Levenstein, J. M. Jones, W. T. Berggren, E. R. Mitchen, J. L. Frane, et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24:185–187, 2006.PubMedCrossRefGoogle Scholar
  61. 61.
    Mali, P., and L. Cheng. Concise review: human cell engineering: cellular reprogramming and genome editing. Stem Cells. 30:75–81, 2012.PubMedCrossRefGoogle Scholar
  62. 62.
    Mali, P., L. H. Yang, K. M. Esvelt, J. Aach, M. Guell, J. E. DiCarlo, et al. Rna-guided human genome engineering via cas9. Science 339:823–826, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Manton, K. J., S. Richards, D. Van Lonkhuyzen, L. Cormack, D. Leavesley, and Z. Upton. A chimeric vitronectin: IGF-i protein supports feeder-cell-free and serum-free culture of human embryonic stem cells. Stem Cells Dev. 19:1297–1305, 2010.PubMedCrossRefGoogle Scholar
  64. 64.
    Marinho, P. A., D. T. Vareschini, I. C. Gomes, S. Paulsen Bda, D. R. Furtado, R. Castilho Ldos, and S. K. Rehen. Xeno-free production of human embryonic stem cells in stirred microcarrier systems using a novel animal/human-component-free medium. Tissue Eng. Part C 19:146–155, 2013.Google Scholar
  65. 65.
    Mehta, J., J. Mehta, O. Frankfurt, J. Altman, A. Evens, M. Tallman, et al. Optimizing the CD34+ cell dose for reduced-intensity allogeneic hematopoietic stem cell transplantation. Leuk. Lymphoma 50:1434–1441, 2009.PubMedCrossRefGoogle Scholar
  66. 66.
    Mei, Y., K. Saha, S. R. Bogatyrev, J. Yang, A. L. Hook, Z. I. Kalcioglu, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 9:768–778, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Melkoumian, Z., J. L. Weber, D. M. Weber, A. G. Fadeev, Y. Zhou, P. Dolley-Sonneville, et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28:606–610, 2010.PubMedCrossRefGoogle Scholar
  68. 68.
    Mercola, M., A. Colas, and E. Willems. Induced pluripotent stem cells in cardiovascular drug discovery. Circ. Res. 112:534–548, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Merkle, F. T., and K. Eggan. Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12:656–668, 2013.PubMedCrossRefGoogle Scholar
  70. 70.
    Merling, R. K., C. L. Sweeney, U. Choi, S. S. De Ravin, T. G. Myers, F. Otaizo-Carrasquero, et al. Transgene-free ipscs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 121:e98–e107, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Miyazaki, T., S. Futaki, K. Hasegawa, M. Kawasaki, N. Sanzen, M. Hayashi, et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem. Biophys. Res. Commun. 375:27–32, 2008.PubMedCrossRefGoogle Scholar
  72. 72.
    Miyazaki, T., S. Futaki, H. Suemori, Y. Taniguchi, M. Yamada, M. Kawasaki, et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun. 3:1236, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Morizane, A., J. Y. Li, and P. Brundin. From bench to bed: the potential of stem cells for the treatment of Parkinson’s disease. Cell Tissue Res. 331:323–336, 2008.PubMedCrossRefGoogle Scholar
  74. 74.
    Nagaoka, M., K. Si-Tayeb, T. Akaike, and S. A. Duncan. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev. Biol. 10:60, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Nandivada, H., L. G. Villa-Diaz, K. S. O’Shea, G. D. Smith, P. H. Krebsbach, and J. Lahann. Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat. Protoc. 6:1037–1043, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Nie, Y., V. Bergendahl, D. J. Hei, J. M. Jones, and S. P. Palecek. Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol. Prog. 25:20–31, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Niebruegge, S., C. L. Bauwens, R. Peerani, N. Thavandiran, S. Masse, E. Sevaptisidis, et al. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol. Bioeng. 102:493–507, 2009.PubMedCrossRefGoogle Scholar
  78. 78.
    Nishishita, N., M. Shikamura, C. Takenaka, N. Takada, N. Fusaki, and S. Kawamata. Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naive state. PLoS ONE 7:e38389, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Noggle, S., H. L. Fung, A. Gore, H. Martinez, K. C. Satriani, R. Prosser, et al. Human oocytes reprogram somatic cells to a pluripotent state. Nature 478:70–75, 2011.PubMedCrossRefGoogle Scholar
  80. 80.
    Oh, S. K., A. K. Chen, Y. Mok, X. Chen, U. M. Lim, A. Chin, et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2:219–230, 2009.PubMedCrossRefGoogle Scholar
  81. 81.
    Oh, S. K. Human embryonic stem cells in serum-free media: growth and metabolism. In: Stem Cells and Cancer Stem Cells, Vol 3, edited by M. A. Hayat. Online: Netherlands: Springer, 2012, pp. 103–112.Google Scholar
  82. 82.
    Olmer, R., A. Haase, S. Merkert, W. Cui, J. Palecek, C. Ran, et al. Long term expansion of undifferentiated human ips and es cells in suspension culture using a defined medium. Stem Cell Res. 5:51–64, 2010.PubMedCrossRefGoogle Scholar
  83. 83.
    Olmer, R., A. Lange, S. Selzer, C. Kasper, A. Haverich, U. Martin, and R. Zweigerdt. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng. Part C Methods 18:772–784, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Phillips, B. W., R. Horne, T. S. Lay, W. L. Rust, T. T. Teck, and J. M. Crook. Attachment and growth of human embryonic stem cells on microcarriers. J. Biotechnol. 138:24–32, 2008.PubMedCrossRefGoogle Scholar
  85. 85.
    Phillips, M. J., K. A. Wallace, S. J. Dickerson, M. J. Miller, A. D. Verhoeven, J. M. Martin, et al. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest. Ophthalmol. Vis. Sci. 53:2007–2019, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Pomp, O., and A. Colman. Disease modelling using induced pluripotent stem cells: status and prospects. BioEssays 35:271–280, 2013.PubMedCrossRefGoogle Scholar
  87. 87.
    Rajala, K., B. Lindroos, S. M. Hussein, R. S. Lappalainen, M. Pekkanen-Mattila, J. Inzunza, et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS ONE 5:e10246, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Richards, M., C. Y. Fong, W. K. Chan, P. C. Wong, and A. Bongso. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20:933–936, 2002.PubMedCrossRefGoogle Scholar
  89. 89.
    Robinton, D. A., and G. Q. Daley. The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Rodin, S., A. Domogatskaya, S. Strom, E. M. Hansson, K. R. Chien, J. Inzunza, et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat. Biotechnol. 28:611–615, 2010.PubMedCrossRefGoogle Scholar
  91. 91.
    Ross, A. M., H. Nandivada, A. L. Ryan, and J. Lahann. Synthetic substrates for long-term stem cell culture. Polymer 53:2533–2539, 2012.CrossRefGoogle Scholar
  92. 92.
    Rowley, J., E. Arbraham, A. Campbell, H. Brandwein, and S. K. Oh. Meeting lot-size challenges of manufacturing adherent cells for therapy. BioProcess Int. 10:16–22, 2012.Google Scholar
  93. 93.
    Saha, K., Y. Mei, C. M. Reisterer, N. K. Pyzocha, J. Yang, J. Muffat, et al. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc. Natl Acad. Sci. U.S.A. 108:18714–18719, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Samuel, R., L. Daheron, S. Liao, T. Vardam, W. S. Kamoun, A. Batista, et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl Acad. Sci. U.S.A. 110:12774–12779, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Schwartz, S. D., J. P. Hubschman, G. Heilwell, V. Franco-Cardenas, C. K. Pan, R. M. Ostrick, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720, 2012.PubMedCrossRefGoogle Scholar
  96. 96.
    Seissler, J., and M. Schott. Generation of insulin-producing beta cells from stem cells—perspectives for cell therapy in type 1 diabetes. Horm. Metab. Res. 40:155–161, 2008.PubMedCrossRefGoogle Scholar
  97. 97.
    Serra, M., C. Brito, E. M. Costa, M. F. Sousa, and P. M. Alves. Integrating human stem cell expansion and neuronal differentiation in bioreactors. BMC Biotechnol. 9:82, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Serra, M., S. B. Leite, C. Brito, J. Costa, M. J. Carrondo, and P. M. Alves. Novel culture strategy for human stem cell proliferation and neuronal differentiation. J. Neurosci. Res. 85:3557–3566, 2007.PubMedCrossRefGoogle Scholar
  99. 99.
    Singh, H., P. Mok, T. Balakrishnan, S. N. Rahmat, and R. Zweigerdt. Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res. 4:165–179, 2010.PubMedCrossRefGoogle Scholar
  100. 100.
    Stacey, G. N., F. Cobo, A. Nieto, P. Talavera, L. Healy, and A. Concha. The development of ‘feeder’ cells for the preparation of clinical grade hES cell lines: challenges and solutions. J. Biotechnol. 125:583–588, 2006.PubMedCrossRefGoogle Scholar
  101. 101.
    Steiner, D., H. Khaner, M. Cohen, S. Even-Ram, Y. Gil, P. Itsykson, et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat. Biotechnol. 28:361–364, 2010.PubMedCrossRefGoogle Scholar
  102. 102.
    Stojkovic, P., M. Lako, R. Stewart, S. Przyborski, L. Armstrong, J. Evans, et al. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells. 23:306–314, 2005.PubMedCrossRefGoogle Scholar
  103. 103.
    Tachibana, M., P. Amato, M. Sparman, N. M. Gutierrez, R. Tippner-Hedges, H. Ma, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872, 2007.PubMedCrossRefGoogle Scholar
  105. 105.
    Takahashi, K., and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676, 2006.PubMedCrossRefGoogle Scholar
  106. 106.
    Takebe, T., K. Sekine, M. Enomura, H. Koike, M. Kimura, T. Ogaeri, et al. Vascularized and functional human liver from an IPSC-derived organ bud transplant. Nature 499:481–484, 2013.PubMedCrossRefGoogle Scholar
  107. 107.
    Terstegge, S., I. Laufenberg, J. Pochert, S. Schenk, J. Itskovitz-Eldor, E. Endl, and O. Brustle. Automated maintenance of embryonic stem cell cultures. Biotechnol. Bioeng. 96:195–201, 2007.PubMedCrossRefGoogle Scholar
  108. 108.
    Thomas, R. J., D. Anderson, A. Chandra, N. M. Smith, L. E. Young, D. Williams, and C. Denning. Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol. Bioeng. 102:1636–1644, 2009.PubMedCrossRefGoogle Scholar
  109. 109.
    Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147, 1998.PubMedCrossRefGoogle Scholar
  110. 110.
    Trounson, A., K. A. Shepard, and N. D. DeWitt. Human disease modeling with induced pluripotent stem cells. Curr. Opin. Genet. Dev. 22:509–516, 2012.PubMedCrossRefGoogle Scholar
  111. 111.
    Tsutsui, H., B. Valamehr, A. Hindoyan, R. Qiao, X. Ding, S. Guo, et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat. Commun. 2:167, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Valamehr, B., H. Tsutsui, C. M. Ho, and H. Wu. Developing defined culture systems for human pluripotent stem cells. Regen. Med. 6:623–634, 2011.PubMedCrossRefGoogle Scholar
  113. 113.
    Villa-Diaz, L. G., S. E. Brown, Y. Liu, A. M. Ross, J. Lahann, J. M. Parent, and P. H. Krebsbach. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells. 30:1174–1181, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Villa-Diaz, L. G., H. Nandivada, J. Ding, N. C. Nogueira-de-Souza, P. H. Krebsbach, K. S. O’Shea, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotechnol. 28:581–583, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Villa-Diaz, L. G., A. M. Ross, J. Lahann, and P. H. Krebsbach. Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells. 31:1–7, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Vogel, G., and C. Holden. Stem cells. Ethics questions add to concerns about NIH lines. Science 321:756–757, 2008.PubMedCrossRefGoogle Scholar
  117. 117.
    Wang, Y., B. K. Chou, S. Dowey, C. He, S. Gerecht, and L. Cheng. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 11:1103–1116, 2013.PubMedCrossRefGoogle Scholar
  118. 118.
    Wang, Q., Z. F. Fang, F. Jin, Y. Lu, H. Gai, and H. Z. Sheng. Derivation and growing human embryonic stem cells on feeders derived from themselves. Stem Cells. 23:1221–1227, 2005.PubMedCrossRefGoogle Scholar
  119. 119.
    Wang, L., T. C. Schulz, E. S. Sherrer, D. S. Dauphin, S. Shin, A. M. Nelson, et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Want, A. J., A. W. Nienow, C. J. Hewitt, and K. Coopman. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the t flask. Regen. Med. 7:71–84, 2012.PubMedCrossRefGoogle Scholar
  121. 121.
    Watanabe, K., M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura, T. Wataya, et al. A rock inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25:681–686, 2007.PubMedCrossRefGoogle Scholar
  122. 122.
    Whittard, J. D., S. E. Craig, A. P. Mould, A. Koch, O. Pertz, J. Engel, and M. J. Humphries. E-cadherin is a ligand for integrin alpha2beta1. Matrix Biol. 21:525–532, 2002.PubMedCrossRefGoogle Scholar
  123. 123.
    Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, and K. H. Campbell. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813, 1997.PubMedCrossRefGoogle Scholar
  124. 124.
    Xu, C., M. S. Inokuma, J. Denham, K. Golds, P. Kundu, J. D. Gold, and M. K. Carpenter. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19:971–974, 2001.PubMedCrossRefGoogle Scholar
  125. 125.
    Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684, 2012.PubMedCrossRefGoogle Scholar
  126. 126.
    Yao, S., S. Chen, J. Clark, E. Hao, G. M. Beattie, A. Hayek, and S. Ding. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl Acad. Sci. U.S.A. 103:6907–6912, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Ye, Z., B. K. Chou, and L. Cheng. Promise and challenges of human iPSC-based hematologic disease modeling and treatment. Int. J. Hematol. 95:601–609, 2012.PubMedCrossRefGoogle Scholar
  128. 128.
    Ye, Z., H. Zhan, P. Mali, S. Dowey, D. M. Williams, Y. Y. Jang, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114:5473–5480, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Yirme, G., M. Amit, I. Laevsky, S. Osenberg, and J. Itskovitz-Eldor. Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev. 17:1227–1241, 2008.PubMedCrossRefGoogle Scholar
  130. 130.
    Yoon, T. M., B. Chang, H. T. Kim, J. H. Jee, D. W. Kim, and D. Y. Hwang. Human embryonic stem cells (HESCS) cultured under distinctive feeder-free culture conditions display global gene expression patterns similar to HESCS from feeder-dependent culture conditions. Stem Cell Rev. 6:425–437, 2010.PubMedCrossRefGoogle Scholar
  131. 131.
    Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920, 2007.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang, J., G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104:e30–e41, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Zou, C., B. K. Chou, S. N. Dowey, K. Tsang, X. Huang, C. F. Liu, et al. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines. Stem Cells Dev. 21:2298–2311, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Zou, J., P. Mali, X. Huang, S. N. Dowey, and L. Cheng. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118:4599–4608, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Zweigerdt, R., R. Olmer, H. Singh, A. Haverich, and U. Martin. Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 6:689–700, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnologyThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Stem Cell Program, Institute of Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Division of Hematology, Department of MedicineThe Johns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Materials Science and EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations