Annals of Biomedical Engineering

, Volume 42, Issue 1, pp 177–192 | Cite as

Automated Classification and Identification of Slow Wave Propagation Patterns in Gastric Dysrhythmia

  • Niranchan Paskaranandavadivel
  • Jerry Gao
  • Peng Du
  • Gregory O’Grady
  • Leo K. ChengEmail author


The advent of high-resolution (HR) electrical mapping of slow wave activity has significantly improved the understanding of gastric slow wave activity in normal and dysrhythmic states. One of the current limitations of this technique is it generates a vast amount of data, making manual analysis a tedious task for research and clinical development. In this study we present new automated methods to classify, identify, and locate patterns of interest in gastric slow wave propagation. The classification method uses a similarity metric to classify slow wave propagations, while the identification algorithm uses the divergence and mean curvature of the slow wave propagation to identify and regionalize patterns of interest. The methods were applied to synthetic and experimental datasets and were also compared to manual analysis. The methods classified and identified patterns of slow wave propagation in less than 1 s, compared to manual analysis which took up to 40 min. The automated methods achieved 96% accuracy in classifying AT maps, and 95% accuracy in identifying the propagation pattern with a mean spatial error of 1.5 mm in comparison to manual methods. These new methods will facilitate the efficient translation of gastrointestinal HR mapping techniques to clinical practice.


High-resolution Activation time map Gastroparesis Interstitial cells of Cajal Extracellular Pacemaker Colliding wavefronts Re-entry Circular propagation Mean curvature Divergence Conduction block 



This work was supported in part by funding from the NZ Health Research Council (New Zealand) and the, NIH R01 grant (R01 DK64775). JG was supported by a University of Auckland Health Research Doctoral Scholarship, a Freemasons Postgraduate Scholarship, and a R. H. T. Bates Postgraduate Scholarship. PD was supported by a New Zealand Postdoctoral Fellowship and a Marsden Fast-Start grant.

Supplementary material

AVI (11385 KB)


  1. 1.
    Allessie, M. A., W. J. Lammers, I. M. Bonke, and J. Hollen. Intra-atrial reentry as a mechanism for atrial flutter induced by acetylcholine and rapid pacing in the dog. Circulation 70:123–135, 1984.Google Scholar
  2. 2.
    Angeli, T., G. O. Grady, P. Du, N. Paskaranandavadivel, A. Pullan, I. Bissett, and L. Cheng. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine. Neurogastroenterol. Motil. 25(5):e304–e314, 2013.Google Scholar
  3. 3.
    Bull, S., G. O’Grady, L. Cheng, and A. Pullan. A framework for the online analysis of multi-electrode gastric slow wave recordings. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society, 2011, pp. 1741–1744.Google Scholar
  4. 4.
    Du, P., G. O’Grady, J. Egbuji, W. Lammers, D. Budgett, P. Nielsen, J. Windsor, A. Pullan, and L. Cheng. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed. Eng. 37:839–846, 2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Du, P., G. O’Grady, J. Gao, S. Sathar, and L. K. Cheng. Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Wiley Interdiscip. Rev. Syst. Biol. Med. 5(4):481–493, 2013.Google Scholar
  6. 6.
    Du, P., G. O’Grady, N. Paskaranandavadivel, T. R. Angeli, C. Lahr, T. L. Abell, L. K. Cheng, and A. J. Pullan. Quantification of velocity anisotropy during gastric electrical arrhythmia. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society, 2011, pp. 4402–4405.Google Scholar
  7. 7.
    Egbuji, J., G. O’Grady, P. Du, L. Cheng, W. Lammers, J. Windsor, and A. Pullan. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol. Motil. 22:e292–e300, 2010.Google Scholar
  8. 8.
    Erickson, J., G. O’Grady, P. Du, J. Egbuji, A. Pullan, and L. Cheng. Automated gastric slow wave cycle partitioning and visualization for high-resolution activation time maps. Ann. Biomed. Eng. 39:469–483, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Erickson, J., G. O’Grady, P. Du, C. Obioha, W. Qiao, W. Richards, L. Bradshaw, A. Pullan, and L. Cheng. Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in high-resolution serosal electrode recordings. Ann. Biomed. Eng. 38:1511–1529, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Fitzgerald, T., D. Brooks, and J. Triedman. Identification of cardiac rhythm features by mathematical analysis of vector fields. IEEE Trans. Biomed. Eng. 52:19–29, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Gray, A., E. Abbena, and S. Salamon. Modern Differential Geometry of Curves and Surfaces With Mathematica. Boca Raton: Chapman & Hall, 2006.Google Scholar
  12. 12.
    Grover, M., C. Bernard, P. Pasricha, M. Lurken, M. Faussone-Pellegrini, T. Smyrk, H. Parkman, T. Abell, W. Snape, and W. Hasler. Clinical-histological associations in gastroparesis: results from the gastroparesis clinical research consortium. Neurogastroenterol. Motil. 24:531–e249, 2012.PubMedCrossRefGoogle Scholar
  13. 13.
    Huizinga, J., and W. Lammers. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1–G8, 2009.PubMedCrossRefGoogle Scholar
  14. 14.
    Kay, M. W., and R. A. Gray. Measuring curvature and velocity vector fields for waves of cardiac excitation in 2-D media. IEEE Trans. Biomed. Eng. 52:50–63, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    Koch, K. The electrifying stomach. Neurogastroenterol. Motil. 23:815–818, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Lammers, W. Arrhythmias in the gut. Neurogastroenterol. Motil. 25:353–357, 2013.PubMedCrossRefGoogle Scholar
  17. 17.
    Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611, 2008.PubMedCrossRefGoogle Scholar
  18. 18.
    Lammers, W., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1200–G1210, 2009.PubMedCrossRefGoogle Scholar
  19. 19.
    Lees-Green, R., P. Du, G. O’Grady, A. Beyder, G. Farrugia, A. Pullan. Biophysically based modeling of the interstitial cells of Cajal: current status and future perspectives. Front. Physiol. 2:29, 2011.Google Scholar
  20. 20.
    Lien, H. C., W. M. Sun, Y.-H. Chen, H. Kim, W. Hasler, and C. Owyang. Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. Am. J. Physiol. Gastrointest. Liver Physiol. 284:G481–G489, 2003.PubMedGoogle Scholar
  21. 21.
    Lin, Z., E. Y. Eaker, I. Sarosiek, and R. W. McCallum. Gastric myoelectrical activity and gastric emptying in patients with functional dyspepsia. Am. J. Gastroenterol. 94:2384–2389, 1999.PubMedCrossRefGoogle Scholar
  22. 22.
    McCallum, R. W., W. Snape, F. Brody, J. Wo, H. P. Parkman, and T. Nowak. Gastric electrical stimulation with Enterra therapy improves symptoms from diabetic gastroparesis in a prospective study. Clin. Gastroenterol. Hepatol. 8:947–954, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Meyer, F. Topographic distance and watershed lines. Signal Process. 38:113–125, 1994.CrossRefGoogle Scholar
  24. 24.
    O’Grady, G., T. Angeli, P. Du, C. Lahr, W. Lammers, J. Windsor, T. Abell, G. Farrugia, A. Pullan, and L. Cheng. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143:589–598, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    O’Grady, G., P. Du, L. Cheng, J. Egbuji, W. Lammers, J. Windsor, and A. Pullan. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G585–G592, 2010.Google Scholar
  26. 26.
    O’Grady, G., P. Du, J. U. Egbuji, W. J. Lammers, A. Wahab, A. J. Pullan, L. K. Cheng, and J. A. Windsor. A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg. Endosc. 23:2842–2848, 2009.Google Scholar
  27. 27.
    O’Grady, G., P. Du, N. Paskaranandavadivel, T. Angeli, W. Lammers, S. Asirvatham, J. Windsor, G. Farrugia, A. Pullan, and L. Cheng. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol. Motil. 24:e299–e312, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    O’Grady, G., J. Egbuji, P. Du, W. Lammers, L. Cheng, J. Windsor, and A. Pullan. High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol. Motil. 23:e345–e355, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Owyang, C., and W. Hasler. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. VI. Pathogenesis and therapeutic approaches to human gastric dysrhythmias. Am. J. Physiol. Gastrointest. Liver Physiol. 283:G8, 2002.Google Scholar
  30. 30.
    Parkman, H., W. Hasler, J. Barnett, and E. Eaker. Electrogastrography: a document prepared by the gastric section of the american motility society clinical GI motility testing task force. Neurogastroenterol. Motil. 15:89–102, 2003.PubMedCrossRefGoogle Scholar
  31. 31.
    Paskaranandavadivel, N., L. K. Cheng, P. Du, G. O’Grady, and A. J. Pullan. Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society, 2011, pp. 1737–1740.Google Scholar
  32. 32.
    Paskaranandavadivel, N., G. O’Grady, P. Du, A. J. Pullan, and L. K. Cheng. An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping. IEEE Trans. Biomed. Eng. 59:882–889, 2012.PubMedCrossRefGoogle Scholar
  33. 33.
    Paskaranandavadivel, N., G. O’Grady, P. Du, and L. K. Cheng. Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol. Motil. 25:79–83, 2013.PubMedCrossRefGoogle Scholar
  34. 34.
    Pogwizd, S. M., R. Hoyt, J. Saffitz, P. Corr, J. Cox, and M. Cain. Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation 86:1872–1887, 1992.PubMedCrossRefGoogle Scholar
  35. 35.
    Rogers, J. M., M. Usui, B. H. KenKnight, R. E. Ideker, and W. M. Smith. A quantitative framework for analyzing epicardial activation patterns during ventricular fibrillation. Ann. Biomed. Eng. 25:749–760, 1997.PubMedCrossRefGoogle Scholar
  36. 36.
    Rogers, J. M., M. Usui, B. H. KenKnight, R. E. Ideker, and W. M. Smith. Recurrent wavefront morphologies: a method for quantifying the complexity of epicardial activation patterns. Ann. Biomed. Eng. 25:761–768, 1997.PubMedCrossRefGoogle Scholar
  37. 37.
    Shenasa, M., G. Hindricks, M. Borggrefe, and G. Breithardt. Cardiac Mapping, 4th ed. Oxford: Wiley-Blackwell, 2009.Google Scholar
  38. 38.
    Yassi, R., G. O’Grady, N. Paskaranandavadivel, P. Du, T. Angeli, A. Pullan, L. Cheng, and J. Erickson. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol. 12:60, 2012.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Niranchan Paskaranandavadivel
    • 1
  • Jerry Gao
    • 1
  • Peng Du
    • 1
  • Gregory O’Grady
    • 1
  • Leo K. Cheng
    • 1
    Email author
  1. 1.Auckland Bioengineering InstituteThe University of AucklandAucklandNew Zealand

Personalised recommendations