Annals of Biomedical Engineering

, Volume 42, Issue 1, pp 149–161 | Cite as

Heterogeneous Susceptibility of Valve Endothelial Cells to Mesenchymal Transformation in Response to TNFα

  • Emily J. Farrar
  • Jonathan T. Butcher


Lack of understanding of the early mechanisms of aortic valve stenosis and calcification hinders the development of diagnostic and therapeutic intervention strategies. Inflammation is a known component of early aortic valve disease and can induce mesenchymal transformation in a subset of aortic valve endothelial cells. Here we present a three-dimensional culture system that allows transforming and non-transforming cells to be independently isolated and analyzed. We have used the system to identify and characterize the dynamic invasion and phenotypic transition of two distinct subsets of endothelial cells: those that invade and transform under TNFα treatment, and those that resist mesenchymal transformation and remain endothelial. We determine that non-transformed cells maintain control levels of endothelial genes VE-cadherin and eNOS, while transformed cells lose these endothelial characteristics and upregulate α-smooth muscle actin. Both subsets of cells have an inflammatory phenotype marked by increased ICAM-1, but transformed cells have increased MMP-9, Notch1, TGF-β, and BMP-4, while non-transformed cells do not. Transformed cells also have distinct effects on alignment of collagen fibers as they invade the hydrogel system, which is not found in control endothelial or interstitial valve cells. Understanding the role of transforming and non-transforming endothelial cells in valve disease will provide an important pathological link between early inflammation and later stages of disease. Discovery of the molecular signature of transformation-resistant endothelial cells could inform development of treatment strategies that promote survival of the valve endothelium.


Aortic valve Calcification EMT Invasion Inflammation Membrane Valve interstitial cells 



The authors would like to thank Shirks Meats of Dundee, NY for providing porcine aortic valves. This study was supported by the National Science Foundation Graduate Research Fellowship (EF), the Alfred P. Sloan Foundation (EF), NIH Grant HL110328, NSF CBET-0955172, and the LeDucq Foundation.

Conflict of interest



  1. 1.
    Aikawa, E., M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386, 2007.PubMedCrossRefGoogle Scholar
  2. 2.
    Ankeny, R. F., V. H. Thourani, D. Weiss, J. D. Vega, W. R. Taylor, R. M. Nerem, and H. Jo. Preferential activation of SMAD1/5/8 on the fibrosa endothelium in calcified human aortic valves: association with low BMP antagonists and SMAD6. PLoS ONE 6:e20969, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Balachandran, K., P. Alford, J. Wylie-Sears, J. A. Goss, A. Grosberg, J. Bischoff, E. Aikawa, R. A. Levine, and K. K. Parker. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc. Natl. Acad. Sci. U.S.A. 108:19943–19948, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bischoff, J., and E. Aikawa. Progenitor cells confer plasticity to cardiac valve endothelium. J. Cardiovasc. Transl. Res. 4:710–719, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Boström, K., K. E. Watson, S. Horn, C. Wortham, I. M. Herman, and L. L. Demer. Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 91:1800–1809, 1993.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Butcher, J. T., and R. M. Nerem. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 12:905–915, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Cano, A., M. A. Pérez-Moreno, I. Rodrigo, A. Locascio, M. J. Blanco, M. G. del Barrio, F. Portillo, and M. A. Nieto. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2:76–83, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Chang, A. C. Y., Y. Fu, V. C. Garside, K. Niessen, L. Chang, M. Fuller, A. Setiadi, J. Smrz, A. Kyle, A. Minchinton, M. Marra, P. A. Hoodless, and A. Karsan. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev. Cell 21:288–300, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Edep, M. E., J. Shirani, P. Wolf, and D. L. Brown. Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc. Pathol. 9:281–286, 2000.PubMedCrossRefGoogle Scholar
  10. 10.
    Fondard, O., D. Detaint, B. Lung, C. Choqueux, H. Adle-Biassette, M. Jarraya, U. Hvass, J. P. Couetil, D. Henin, J. B. Michel, A. Vahanian, and M. P. Jacob. Extracellular matrix remodeling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J. 26:1333–1341, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Galichon, P., and A. Hertig. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair 4:11, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Garg, V., A. N. Muth, J. F. Ransom, M. K. Schluterman, R. Barnes, I. N. King, P. D. Grossfeld, and D. Srivastava. Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Ghaisas, N., J. Foley, D. O’Briain, P. Crean, D. Kelleher, and M. Walsh. Adhesion molecules in nonrheumatic aortic valve disease: endothelial expression, serum levels and effects of valve replacement. J. Am. Coll. Cardiol. 36:2257–2262, 2000.PubMedCrossRefGoogle Scholar
  14. 14.
    Go, A. S., et al. Heart disease and stroke statistics—2013 Update: a report from the American Heart Association. Circulation 127:e6–e245, 2013.PubMedCrossRefGoogle Scholar
  15. 15.
    Goldbarg, S. H., S. Elmariah, M. A. Miller, and V. Fuster. Insights into degenerative aortic valve disease. J. Am. Coll. Cardiol. 50:1205–1230, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Gould, R. A., and J. T. Butcher. Isolation of valvular endothelial cells. J. Vis. Exp. 46:1–5, 2010.Google Scholar
  17. 17.
    Guerraty, M. A., G. R. Grant, J. W. Karanian, O. A. Chiesa, W. F. Pritchard, and P. F. Davies. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-pathway activation in swine aortic valve endothelium. Arterioscler. Thromb. Vasc. Biol. 30:225–231, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hjortnaes, J., J. Butcher, J. L. Figueiredo, M. Riccio, R. H. Kohler, K. M. Kozloff, R. Weissleder, and E. Aikawa. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur. Heart J. 31:1975–1984, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Hollier, B. G., A. A. Tinnirello, S. J. Werden, K. W. Evans, J. H. Taube, T. R. Sarkar, N. Sphyris, M. Shariati, S. V. Kumar, V. L. Battula, J. I. Herschkowitz, R. Guerra, J. T. Chang, N. Miura, J. M. Rosen, and S. A. Mani. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res. 73:1981–1992, 2013.PubMedCrossRefGoogle Scholar
  20. 20.
    Jia, Q., B. W. McDill, S.-Z. Li, C. Deng, C.-P. Chang, and F. Chen. Smad signaling in the neural crest regulates cardiac outflow tract remodeling through cell autonomous and non-cell autonomous effects. Dev. Biol. 311:172–184, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Jian, B., N. Narula, Q. Li, E. Mohler, and R. Levy. Progression of aortic valve stenosis: TGF-beta 1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75:457–465, 2003.PubMedCrossRefGoogle Scholar
  22. 22.
    Kalluri, R., and R. A. Weinberg. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119:1420–1428, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Liu, A. C., and A. I. Gotlieb. Transforming growth factor-β regulates in vitro heart valve repair by activated valve interstitial cells. Am. J. Pathol. 173:1275–1285, 2008.PubMedCrossRefGoogle Scholar
  24. 24.
    Mahler, G. J., E. J. Farrar, and J. T. Butcher. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33:121–130, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Mohler, E. R., M. K. Chawla, A. W. Chang, N. Vyavahare, R. J. Levy, L. Graham, and F. H. Gannon. Identification and characterization of calcifying valve cells from human and canine aortic valves. J. Heart Valve Dis. 8:254–260, 1999.PubMedGoogle Scholar
  26. 26.
    Paranya, G., S. Vineberg, E. Dvorin, S. Kaushal, S. J. Roth, E. Rabkin, F. J. Schoen, and J. Bischoff. Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am. J. Pathol. 159:1335–1343, 2001.PubMedCrossRefGoogle Scholar
  27. 27.
    Richards, J., I. El-Hamamsy, S. Chen, Z. Sarang, P. Sarathchandra, M. H. Yacoub, A. H. Chester, and J. T. Butcher. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. Am. J. Pathol. 182:1922–1931, 2013.PubMedCrossRefGoogle Scholar
  28. 28.
    Simmons, C. A., G. R. Grant, E. Manduchi, and P. F. Davies. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ. Res. 96:792–799, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Stewart, W. J., and B. A. Carabello. Aortic valve disease. In: Textbook of Cardiovascular Medicine, edited by E. J. Topol, R. M. Califf, E. N. Prystowsky, J. D. Thomas, and P. D. Thompson. Philadelphia, PA: Lippincott Williams & Wilkins, 2006, pp. 366–388.Google Scholar
  30. 30.
    Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-β1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29:254–260, 2009.PubMedCrossRefGoogle Scholar
  31. 31.
    Walker, G. A., K. S. Masters, D. N. Shah, K. S. Anseth, and L. A. Leinwand. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ. Res. 95:253–260, 2004.PubMedCrossRefGoogle Scholar
  32. 32.
    Wylie-Sears, J., E. Aikawa, R. A. Levine, J.-H. Yang, and J. Bischoff. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 31:598–607, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Yang, J.-H., J. Wylie-Sears, and J. Bischoff. Opposing actions of Notch1 and VEGF in post-natal cardiac valve endothelial cells. Biochem. Biophys. Res. Commun. 374:512–516, 2008.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringCornell UniversityIthacaUSA

Personalised recommendations