Annals of Biomedical Engineering

, Volume 42, Issue 1, pp 97–109 | Cite as

On the Characterization of a Non-Newtonian Blood Analog and Its Response to Pulsatile Flow Downstream of a Simplified Stenosis

  • Andrew M. Walker
  • Clifton R. Johnston
  • David E. Rival


Particle image velocimetry (PIV) was used to investigate the influence of a non-Newtonian blood analog of aqueous xanthan gum on flow separation in laminar and transitional environments and in both steady and pulsatile flow. Initial steady pressure drop measurements in laminar and transitional flow for a Newtonian analog showed an extension of laminar behavior to Reynolds number (Re) ~ 2900 for the non-Newtonian case. On a macroscale level, this showed good agreement with porcine blood. Subsequently, PIV was used to measure flow patterns and turbulent statistics downstream of an axisymmetric stenosis in the aqueous xanthan gum solution and for a Newtonian analog at Re ~ 520 and Re ~ 1250. The recirculation length for the non-Newtonian case was reduced at Re ~ 520 resultant from increased viscosity at low shear strain rates. At Re ~ 1250, peak turbulent intensities and turbulent shear stresses were dampened by the non-Newtonian fluid in close proximity to the blockage outlet. Although the non-Newtonian case’s recirculation length was increased at peak pulsatile flow, turbulent shear stress was found to be elevated for the Newtonian case downstream from the blockage, suggesting shear layer fragmentation and radial transport. Our findings conclude that the xanthan gum elastic polymer prolongs flow stabilization, which in turn emphasizes the importance of non-Newtonian blood characteristics on the resulting flow patterns in such cardiovascular environments.


Flow separation Non-Newtonian fluid Transitional flow Turbulent stresses Viscosity Xanthan gum 



The authors wish to thank Lin Li for her assistance in the acquisition of pressure drop measurements.


  1. 1.
    Agarwal, U. S., A. Dutta, and R. A. Mashelkar. Migration of macromolecules under flow: the physical origin and engineering implications. Chem. Eng. Sci. 49:1693–1717, 1994.CrossRefGoogle Scholar
  2. 2.
    Ahmed, S. A., and D. P. Giddens. Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J. Biomech. 16:505–516, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Bewersdorff, H. W., and R. P. Singh. Rheological and drag reduction characteristics of xanthan gum solutions. Rheol. Acta 27:617–627, 1988.CrossRefGoogle Scholar
  4. 4.
    Bluestein, D., C. Gutierrez, M. Londono, and R. T. Schoephoerster. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann. Biomed. Eng. 27:763–773, 1999.PubMedCrossRefGoogle Scholar
  5. 5.
    Bortolotto, L. A., O. Hanon, G. Franconi, P. Boutouyrie, S. Legrain, and X. Girerd. The aging process modifies the distensibility of elastic but not muscular arteries. Hypertension 34:889–892, 1999.Google Scholar
  6. 6.
    Brooks, D. E., J. W. Goodwin, and G. V. F. Seaman. Interactions among erythrocytes under shear. J. Appl. Physiol. 28:172–177, 1970.Google Scholar
  7. 7.
    Brookshier, K. A., and J. M. Tarbell. Evaluation of a transparent blood analog fluid: aqueous xanthan gum/glycerin. Biorheology 30:107–116, 1993.PubMedGoogle Scholar
  8. 8.
    Cavazutti, M., M. A. Atherton, M. W. Collins, and G. S. Barozzi. Non-Newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm. Proc. Inst. Mech. Eng. Part H 225:597–609, 2011.Google Scholar
  9. 9.
    Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37:1310–1321, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Chien, S. Shear dependence of effective cell volume as a determination of blood viscosity. Science 168:977–979, 1970.PubMedCrossRefGoogle Scholar
  11. 11.
    Chiu, J.-J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–287, 2011.Google Scholar
  12. 12.
    Choi, H. W., and A. I. Barakat. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Biorheology 42:493–509, 2005.PubMedGoogle Scholar
  13. 13.
    Chung, J. S., and W. P. Graebel. Laser anemometer measurements of turbulence in non-Newtonian pipe flows. Phys. Fluids 15:546–554, 1972.CrossRefGoogle Scholar
  14. 14.
    Cokelet, G. R., and H. J. Meiselman. Macro- and micro-rheological properties of blood. In: Handbook of Hemorheology and Hemodynamics, edited by O. K. Baskurt, M. R. Hardeman, M. W. Rampling, and H. J. Meiselman. Amsterdam: IOS Press, 2007, pp. 45–71.Google Scholar
  15. 15.
    Ghalichi, F., X. Deng, A. De Champlain, Y. Douville, M. King, and R. Guidoin. Low Reynolds number turbulence modeling of blood flow in arterial stenosis. Biorheology 35:281–294, 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Gijsen, F. J. H., F. N. van de Vosse, and J. D. Janssen. The influence of the non-Newtonian properties of blood on the flow in the large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32:601–608, 1999.PubMedCrossRefGoogle Scholar
  17. 17.
    Han, S.-I., O. Marseille, C. Gehlan, and B. Blümich. Rheology of blood by NMR. J. Magn. Reson. 152:87–94, 2001.PubMedCrossRefGoogle Scholar
  18. 18.
    Hemlinger, G., R. V. Geiger, S. Schreck, and R. M. Nerem. Effects of pulsatile flow on cultured vascular endothelium. J. Biomech. Eng. 113:123–131, 1991.CrossRefGoogle Scholar
  19. 19.
    Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimations within the 50 cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 126:431–437, 2004.Google Scholar
  20. 20.
    Johnston, B. M., P. R. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39:1116–1128, 2006.PubMedCrossRefGoogle Scholar
  21. 21.
    Kähler, C. J., S. Scharnowski, and C. Cierpka. On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52:1641–1656, 2012.CrossRefGoogle Scholar
  22. 22.
    Kähler, C. J., U. Scholz, and J. Ortmanns. Wall-shear-stress and near wall turbulence measurements up to a single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41:327–341, 2006.CrossRefGoogle Scholar
  23. 23.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.PubMedCrossRefGoogle Scholar
  24. 24.
    Mann, D. E., and J. M. Tarbell. Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheology 27:711–733, 1990.PubMedGoogle Scholar
  25. 25.
    Mejia, J., R. Mongrain, and O. F. Bertrand. Accurate prediction of wall shear stress in a stented artery: Newtonian versus non-Newtonian models. J. Biomech. Eng. 133:074501, 2011.Google Scholar
  26. 26.
    Molla, M. M., and M. C. Paul. LES of non-Newtonian physiological blood flow in a model of arterial stenosis. Med. Eng. Phys. 34:1079–1087, 2012.PubMedCrossRefGoogle Scholar
  27. 27.
    Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries—Theoretical, Experimental and Clinical Perspectives (5th ed.). London: Hodder Arnold, p. 616, 2005.Google Scholar
  28. 28.
    Pak, B., Y. I. Cho, and S. U. S. Choi. Separation and reattachment of non-Newtonian fluid flows in sudden expansion pipe. J. Non-Newton. Fluid 37:175–199, 1990.CrossRefGoogle Scholar
  29. 29.
    Pedley, T. J. The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press, p. 446, 1980.CrossRefGoogle Scholar
  30. 30.
    Perktold, K., E. Thurner, and T. Kenner. Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Med. Biol. Eng. Comput. 32:19–26, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Peterson, S. D., and M. W. Plesniak. The influence of inlet velocity profile and secondary flow on pulsatile flow in a model artery with stenosis. J. Fluid Mech. 616:263–301, 2008.CrossRefGoogle Scholar
  32. 32.
    Raffel, M., C. Willert, S. Wereley, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide. Berlin: Springer-Verlag, p. 448, 2007.Google Scholar
  33. 33.
    Razavi, A., E. Shirani, and M. R. Sadeghi. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44:2021–2030, 2011.PubMedCrossRefGoogle Scholar
  34. 34.
    Schirmer, C. M., and A. M. Malek. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow. Neurosurgery 61:855–864, 2007.Google Scholar
  35. 35.
    Schram, G. A Practical Approach to Rheology and Rheometry. Karlsruhe: Gebrueder Haake GmbH, p. 291, 2000.Google Scholar
  36. 36.
    Shaaban, A. M., and A. J. Duerinckx. Wall shear stress and early atherosclerosis: a review. AJR 174:1657–1665, 2000.PubMedCrossRefGoogle Scholar
  37. 37.
    Sousa, P. C., F. T. Pinho, M. S. N. Oliveira, and M. A. Alves. Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5:014108, 2011.PubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stroud, J. S., S. A. Berger, and D. Saloner. Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J. Biomech. 33:443–455, 2000.PubMedCrossRefGoogle Scholar
  39. 39.
    Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J. Biomech. Eng. 126:363–370, 2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Tickner, G. E., and A. H. Sacks. Engineering simulations of the viscous behavior of whole blood suspensions of flexible particles. Circ. Res. 25:389–400, 1969.PubMedCrossRefGoogle Scholar
  41. 41.
    Topper, J. N., and M. A. Gimbrone, Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol. Med. Today 5:40–46, 1999.PubMedCrossRefGoogle Scholar
  42. 42.
    Trip, R., D. J. Kuik, J. Westerweel, and C. Poelma. An experimental study of transitional pulsatile pipe flow. Phys. Fluids 24:014013, 2012.CrossRefGoogle Scholar
  43. 43.
    Varghese, S. S., and S. H. Frankel. Numerical modeling of pulsatile turbulent flow in stenotic vessels. J. Biomech. Eng. 125:445–460, 2003.PubMedCrossRefGoogle Scholar
  44. 44.
    Varghese, S. S., S. H. Frankel, and P. F. Fischer. Direct numerical simulation of stenotic flows part 1. Steady flow. J. Fluid Mech. 582:253–280, 2007.CrossRefGoogle Scholar
  45. 45.
    Varghese, S. S., S. H. Frankel, and P. F. Fischer. Direct numerical simulation of stenotic flows part 2. Pulsatile flow. J. Fluid Mech. 582:281–318, 2007.CrossRefGoogle Scholar
  46. 46.
    Vlastos, G., D. Lerche, B. Koch, O. Samba, and M. Pohl. The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions. Rheol. Acta. 36:160–172, 1997.Google Scholar
  47. 47.
    Walker, A. M., C. R. Johnston, and D. E. Rival. The quantification of hemodynamic parameters downstream of a Gianturco zenith stent wire using Newtonian and non-Newtonian analog fluids in a pulsatile flow environment. J. Biomech. Eng. 134:111001, 2012.PubMedCrossRefGoogle Scholar
  48. 48.
    Wells, R. E., Jr., and E. W. Merrill. Shear rate dependence of the viscosity of whole blood and plasma. Science 133:763–764, 1961.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Andrew M. Walker
    • 1
  • Clifton R. Johnston
    • 2
  • David E. Rival
    • 1
  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Department of Mechanical and Manufacturing EngineeringDalhousie UniversityHalifaxCanada

Personalised recommendations