Annals of Biomedical Engineering

, Volume 41, Issue 11, pp 2248–2263 | Cite as

Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself

  • Alois Pfenniger
  • Magnus Jonsson
  • Adrian Zurbuchen
  • Volker M. Koch
  • Rolf VogelEmail author


Human energy harvesting is envisioned as a remedy to the weight, the size, and the poor energy density of primary batteries in medical implants. The first implant to have necessarily raised the idea of a biological power supply was the pacemaker in the early 1960s. So far, review articles on human energy harvesting have been rather unspecific and no tribute has been given to the early role of the pacemaker and the cardiovascular system in triggering research in the field. The purpose of the present article is to provide an up-to-date review of research efforts targeting the cardiovascular system as an alternative energy source for active medical implants. To this end, a chronological survey of the last 14 most influential publications is proposed. They include experimental and/or theoretical studies based on electromagnetic, piezoelectric, or electrostatic transducers harnessing various forms of energy, such as heart motion, pressure gradients, and blood flow. Technical feasibility does not imply clinical applicability: although most of the reported devices were shown to harvest an interesting amount of energy from a physiological environment, none of them were tested in vivo for a longer period of time.


Heart motion Blood flow Blood pressure Artery Piezoelectric Electromagnetic Electrostatic 


  1. 1.
    Abad, C., C. Santana, J. Diaz, and J. Feijoo. Arteriosclerotic histologic evaluation of the internal mammary artery in patients undergoing coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 9:198–201, 1995.PubMedCrossRefGoogle Scholar
  2. 2.
    Anton, S. R., and H. A. Sodano. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16:R1–R21, 2007.CrossRefGoogle Scholar
  3. 3.
    Ariav, A. Method and apparatus for body generation of electrical energy. Patent: US7081683, 2006.Google Scholar
  4. 4.
    Auphan, M. Heart-actuated, spring driven cardiac stimulator. Patent: US3486506, 1969.Google Scholar
  5. 5.
    Bauman, L., C. S. Chung, M. Karamanoglu, and S. J. Kovács. The peak atrioventricular pressure gradient to transmitral flow relation: kinematic model prediction with in vivo validation. J. Am. Soc. Echocardiogr. 17:839–844, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Beck, H., W. E. Boden, S. Patibandla, D. Kireyev, V. Gupta, F. Campagna, M. E. Cain, and J. E. Marine. 50th anniversary of the first successful permanent pacemaker implantation in the United States: historical review and future directions. Am. J. Cardiol. 106:810–818, 2010.PubMedCrossRefGoogle Scholar
  7. 7.
    Beeby, S. P., M. J. Tudor, and N. M. White. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17:R175–R195, 2006.CrossRefGoogle Scholar
  8. 8.
    Bullen, R. A., T. C. Arnot, J. B. Lakeman, and F. C. Walsh. Biofuel cells and their development. Biosens. Bioelectron. 21:2015–2045, 2006.PubMedCrossRefGoogle Scholar
  9. 9.
    Bussy, C., P. Boutouyrie, P. Lacolley, P. Challande, and S. Laurent. Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension 35:1049–1054, 2000.PubMedCrossRefGoogle Scholar
  10. 10.
    Cahill, A. E., D. Nash, J. F. Neville, and W. J. van der Grinten. Program for development of an implantable fuel cell. In: Proceedings of the Biochemical Fuel Cell Session, Interagency Advanced Power Group Publications, PIC-BAT 209/5, 1962.Google Scholar
  11. 11.
    Cernasov, A. N. Apparatus and method for supplying power to subcutaneously implanted devices. Patent: US7813810, 2010.Google Scholar
  12. 12.
    Chandrakasan, A. P., N. Verma, and D. C. Daly. Ultralow-power electronics for biomedical applications. Annu. Rev. Biomed. Eng. 10:247–274, 2008.PubMedCrossRefGoogle Scholar
  13. 13.
    Colton, C. K., and R. F. Drake. Analysis of in vivo deoxygenation of human blood: a feasibility study for an implantable biological fuel cell. Trans. Am. Soc. Artif. Intern. Organs 15:187–199, 1969.PubMedGoogle Scholar
  14. 14.
    Curtis, A. B., S. J. Worley, P. B. Adamson, E. S. Chung, I. Niazi, L. Sherfesee, T. Shinn, and M. St. John Sutton. Biventricular pacing for atrioventricular block and systolic dysfunction. N. Engl. J. Med. 368:1585–1593, 2013.PubMedCrossRefGoogle Scholar
  15. 15.
    Dammers, R., F. Stifft, J. H. M. Tordoir, J. M. M. Hameleers, A. P. G. Hoeks, and P. J. E. H. M. Kitslaar. Shear stress depends on vascular territory: comparison between common carotid and brachial artery. J. Appl. Physiol. 94:485–489, 2003.PubMedGoogle Scholar
  16. 16.
    Deterre, M., B. Boutaud, R. Dalmolin, S. Boisseau, J.-J. Chaillout, E. Lefeuvre, and E. Dufour-Gergam. Energy harvesting system for cardiac implant applications. In: Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2011, pp. 387–391.Google Scholar
  17. 17.
    Deterre, M., E. Lefeuvre, and E. Dufour-Gergam. An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater. Struct. 21:085004, 2012.CrossRefGoogle Scholar
  18. 18.
    Eli, U. Implantable device with miniature rotating portion for energy harvesting. Patent: US2009/0171448, 2009.Google Scholar
  19. 19.
    Farco, J. Biomechatronic device. Patent: WO2011/119779.Google Scholar
  20. 20.
    Gelbart, D., and S. V. Lichtenstein. Self-powered leadless pacemaker. Patent: US2007/0276444.Google Scholar
  21. 21.
    Gelbart, D., and S. V. Lichtenstein. Self-powered resonant leadless pacemaker. Patent: US2007/0293904.Google Scholar
  22. 22.
    Goto, H., T. Sugiura, Y. Harada, and T. Kazui. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Comput. 37:377–380, 1999.PubMedCrossRefGoogle Scholar
  23. 23.
    Greatbatch, W. Origins of the implantable cardiac pacemaker. J. Cardiovasc. Nurs. 5:80–85, 1991.PubMedGoogle Scholar
  24. 24.
    Holzer, A. Micro-generator implant. Patent: US2005/0256549.Google Scholar
  25. 25.
    Kanai, H., M. Sato, Y. Koiwa, and N. Chubachi. Transcutaneous measurement and spectrum analysis of heart wall vibrations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43:791–810, 1996.CrossRefGoogle Scholar
  26. 26.
    Karami, M. A., D. J. Bradley, and D. J. Inman. Abstract 15551: Vibration powered cardiac rhythm devices. Circulation 126:A15551, 2012.Google Scholar
  27. 27.
    Karami, M. A., and D. J. Inman. Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting. J. Vib. Acoust. 133:011002, 2010.CrossRefGoogle Scholar
  28. 28.
    Karami, M. A., and D. J. Inman. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100:042901-1–042901-4, 2012.Google Scholar
  29. 29.
    Kerzenmacher, S., J. Ducrée, R. Zengerle, and F. von Stetten. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182:1–17, 2008.CrossRefGoogle Scholar
  30. 30.
    Khaligh, A., P. Zeng, and C. Zheng. Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans. Ind. Electron. 57:850–860, 2010.CrossRefGoogle Scholar
  31. 31.
    Kim, S., W. W. Clark, and Q.-M. Wang. Piezoelectric energy harvesting with a clamped circular plate: analysis. J. Intell. Mater. Syst. Struct. 16:847–854, 2005.CrossRefGoogle Scholar
  32. 32.
    Kim, S., W. W. Clark, and Q.-M. Wang. Piezoelectric energy harvesting with a clamped circular plate: experimental study. J. Intell. Mater. Syst. Struct. 16:855–863, 2005.CrossRefGoogle Scholar
  33. 33.
    Knaapen, P., T. Germans, J. Knuuti, W. J. Paulus, P. A. Dijkmans, C. P. Allaart, A. A. Lammertsma, and F. C. Visser. Myocardial energetics and efficiency current status of the noninvasive approach. Circulation 115:918–927, 2007.PubMedCrossRefGoogle Scholar
  34. 34.
    Ko, W. H. Piezoelectric energy converter for electronic implants. Patent: US3456134, 1969.Google Scholar
  35. 35.
    Konikoff, J. J. In vivo experiments with the bioelectric potentials. Aerosp. Med. 37:824–828, 1966.PubMedGoogle Scholar
  36. 36.
    Konikoff, J. J. A Survey of in Vivo Energy Sources. Washington: American Institute of Biological Sciences Bioinstrumentation Advisory Council, 1967, 22 pp.Google Scholar
  37. 37.
    Konikoff, J. J., and L. W. Reynolds. Results of some experiments in biochemical electricity. In: Proceedings of the Biochemical Fuel Cell Session, Interagency Advanced Power Group Publications, PIC-BAT 209/5, 1962.Google Scholar
  38. 38.
    Lentner, C. Geigy Scientific Table, Vol. 5, Heart and Circulation. Basel: CIBA-GEIGY Ltd, 278 pp., 1990.Google Scholar
  39. 39.
    Levy, M. N., and A. J. Pappano. Cardiovascular Physiology. Philadelphia: Mosby Elsevier, 288 pp., 2007.Google Scholar
  40. 40.
    Lewin, G., G. H. Myers, V. Parsonnet, and V. Raman. An improved biological power source for cardiac pacemakers. ASAIO Trans. 14:215–219, 1968.Google Scholar
  41. 41.
    Liu, J., G. Cao, Z. Yang, D. Wang, D. Dubois, X. Zhou, G. L. Graff, L. R. Pederson, and J.-G. Zhang. Oriented nanostructures for energy conversion and storage. ChemSusChem 1:676–697, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Mallela, V. S., V. Ilankumaran, and N. S. Rao. Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol. J. 4:201–212, 2004.PubMedGoogle Scholar
  43. 43.
    Mitcheson, P. D., E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96:1457–1486, 2008.CrossRefGoogle Scholar
  44. 44.
    Mo, C., L. J. Radziemski, and W. W. Clark. Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system. Smart Mater. Struct. 19:025016, 2010.CrossRefGoogle Scholar
  45. 45.
    Mo, C., L. J. Radziemski, and W. W. Clark. Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms. Smart Mater. Struct. 19:075010, 2010.CrossRefGoogle Scholar
  46. 46.
    Mutlak, D., D. Aronson, J. Lessick, S. A. Reisner, S. Dabbah, and Y. Agmon. Functional tricuspid regurgitation in patients with pulmonary hypertension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest 135:115–121, 2009.PubMedCrossRefGoogle Scholar
  47. 47.
    Nagel, M. Vorrichtung zur Erzeugung elektrischer Energie in lebenden Organismen. Patent: DE19535566, 1997.Google Scholar
  48. 48.
    Nakatani, S. Left ventricular rotation and twist: why should we learn? J. Cardiovasc. Ultrasound 19:1–6, 2011.PubMedCrossRefGoogle Scholar
  49. 49.
    Nicoud, F. Hemodynamic changes induced by stenting in elastic arteries. Center for Turbulence Research, Annual Research Briefs 335–347, 2002.Google Scholar
  50. 50.
    Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.PubMedCrossRefGoogle Scholar
  51. 51.
    Novosel, E. C., W. Meyer, N. Klechowitz, H. Krüger, M. Wegener, H. Walles, G. E. M. Tovar, T. Hirth, and P. J. Kluger. Evaluation of cell–material interactions on newly designed, printable polymers for tissue engineering applications. Adv. Eng. Mater. 13:B467–B475, 2011.CrossRefGoogle Scholar
  52. 52.
    Parsonnet, V., G. H. Myers, R. Zucker, H. Lotman, and M. M. Asa. A cardiac pacemaker using biologic energy sources. ASAIO Trans. 9:174–177, 1963.Google Scholar
  53. 53.
    Pfenniger, A., D. Obrist, A. Stahel, V. M. Koch, and R. Vogel. Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator. Med. Biol. Eng. Comput. 51:741–755, 2013.PubMedCrossRefGoogle Scholar
  54. 54.
    Pfenniger, A., L. N. Wickramarathna, R. Vogel, and V. M. Koch. Design and realization of an energy harvester using pulsating arterial pressure. Med. Eng. Phys. 35:1256–1265, 2013.PubMedCrossRefGoogle Scholar
  55. 55.
    Pham, H.-T., C.-Y. Chiu, and D.-A. Wang. An electromagnetic energy harvester based on pressure fluctuation in Kármán vortex street. In: The 1st International Symposium on Automotive & Convergence Engineering, 2011, pp. 1–4.Google Scholar
  56. 56.
    Platt, S. R., S. Farritor, and H. Haider. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans. Mechatron. 10:240–252, 2005.CrossRefGoogle Scholar
  57. 57.
    Pless, B. D. Device for energy harvesting within a vessel. Patent: US8283793, 2012.Google Scholar
  58. 58.
    Potkay, J. A. In situ energy harvesting systems for implanted medical devices. Patent: US2010/0298720.Google Scholar
  59. 59.
    Potkay, J. A., and K. Brooks. An arterial cuff energy scavenger for implanted microsystems. In: The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008, pp. 1580–1583.Google Scholar
  60. 60.
    Ramsay, M. J., and W. W. Clark. Piezoelectric energy harvesting for bio MEMS applications. Proc. SPIE 4332:429–438, 2001.CrossRefGoogle Scholar
  61. 61.
    Roberts, S., R. Freeland, G. Stanley, K. D. Dawkins, J. M. Morgan, and P. R. Roberts. Energy harvester for an implant device. Patent: US8135469, 2012.Google Scholar
  62. 62.
    Roberts, P., G. Stanley, and J. M. Morgan. Abstract 2165: Harvesting the energy of cardiac motion to power a pacemaker. Circulation 118:679–680, 2008.CrossRefGoogle Scholar
  63. 63.
    Romero, E., R. O. Warrington, and M. R. Neuman. Energy scavenging sources for biomedical sensors. Physiol. Meas. 30:R35–R62, 2009.PubMedCrossRefGoogle Scholar
  64. 64.
    Shimokawa, T., S. Manabe, T. Fukui, and S. Takanashi. Remodeling of reconstructed left anterior descending coronary arteries with internal thoracic artery grafts. Ann. Thorac. Surg. 88:54–57, 2009.PubMedCrossRefGoogle Scholar
  65. 65.
    Sohn, J. W., S. B. Choi, and D. Y. Lee. An investigation on piezoelectric energy harvesting for MEMS power sources. Proc. IMechE C 219:429–436, 2005.CrossRefGoogle Scholar
  66. 66.
    Sood, A. K., and S. Ghosh. Carbon nanotube flow sensor device and method. Patent: US6718834, 2004.Google Scholar
  67. 67.
    Starner, T. Human-powered wearable computing. IBM Syst. J. 35:618–629, 1996.CrossRefGoogle Scholar
  68. 68.
    Starner, T., and J. A. Paradiso. Human-generated power for mobile electronics. In: Low-Power Electronics Design, edited by C. Piguet. Boca Raton: CRC Press, 2004, pp. 45-1–45-35.Google Scholar
  69. 69.
    Tashiro, R., N. Kabei, K. Katayama, E. Tsuboi, and K. Tsuchiya. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J. Artif. Organs 5:239–245, 2002.CrossRefGoogle Scholar
  70. 70.
    Tesla, N. Turbine. Patent: US1061206, 1913.Google Scholar
  71. 71.
    Thüring, C., O. M. Hess, T. Murakami, N. H. Goebel, J. Grimm, and H. P. Krayenbühl. Normalwerte der linksventrikulären Funktion. Biplane Angiokardiographie, unter Berücksichtigung geschlechtsspezifischer Unterschiede. Fortschr. Röntgenstr. 150:562–568, 1989.CrossRefGoogle Scholar
  72. 72.
    Tortora, G. J., and B. H. Derrickson. Principles of Anatomy and Physiology. Hoboken: John Wiley & Sons, 1174 pp., 2009.Google Scholar
  73. 73.
    Vullers, R. J. M., R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens. Micropower energy harvesting. Solid-State Electron. 53:684–693, 2009.CrossRefGoogle Scholar
  74. 74.
    Wang, D.-A., C.-Y. Chiu, and H.-T. Pham. Electromagnetic energy harvesting from vibrations induced by Kármán vortex street. Mechatronics 22:746–756, 2012.CrossRefGoogle Scholar
  75. 75.
    Warriner, R. K., K. W. Johnston, and R. S. C. Cobbold. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol. Meas. 29:157–179, 2008.PubMedCrossRefGoogle Scholar
  76. 76.
    Westerhof, N., N. Stergiopulos, and M. I. M. Noble. Snapshots of Hemodynamics—An Aid for Clinical Research and Graduate Education. Boston: Springer, 192 pp., 2005.Google Scholar
  77. 77.
    Wong, L. S. Y., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas. A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuits 39:2446–2456, 2004.CrossRefGoogle Scholar
  78. 78.
    Zurbuchen, A., A. Pfenniger, A. Stahel, C. T. Stoeck, S. Vandenberghe, V. M. Koch, and R. Vogel. Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 41:131–141, 2013.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Alois Pfenniger
    • 1
    • 2
    • 3
  • Magnus Jonsson
    • 1
  • Adrian Zurbuchen
    • 1
    • 3
  • Volker M. Koch
    • 2
  • Rolf Vogel
    • 1
    • 4
    Email author
  1. 1.ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
  2. 2.Engineering and Information TechnologyBern University of Applied SciencesBielSwitzerland
  3. 3.Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
  4. 4.Department of CardiologySolothurn HospitalsSolothurnSwitzerland

Personalised recommendations