Annals of Biomedical Engineering

, Volume 42, Issue 7, pp 1470–1481 | Cite as

Cellularized Microcarriers as Adhesive Building Blocks for Fabrication of Tubular Tissue Constructs

  • Waleed O. Twal
  • Sandra C. Klatt
  • Keerthi Harikrishnan
  • Ebtesam Gerges
  • Marion A. Cooley
  • Thomas C. Trusk
  • Boran Zhou
  • Mohamed G. Gabr
  • Tarek Shazly
  • Susan M. Lessner
  • Roger R. Markwald
  • W. Scott Argraves


To meet demands of vascular reconstruction, there is a need for prosthetic alternatives to natural blood vessels. Here we explored a new conduit fabrication approach. Macroporous, gelatin microcarriers laden with human umbilical vein endothelial cells and aortic smooth muscle cells were dispensed into tubular agarose molds and found to adhere to form living tubular tissues. The ability of cellularized microcarriers to adhere to one another involved cellular and extracellular matrix bridging that included the formation of epithelium-like cell layers lining the lumenal and ablumenal surfaces of the constructs and the deposition of collagen and elastin fibers. The tubular tissues behaved as elastic solids, with a uniaxial mechanical response that is qualitatively similar to that of native vascular tissues and consistent with their elastin and collagen composition. Linearized measures of the mechanical response of the fabricated tubular tissues at both low and high strains were observed to increase with duration of static culture, with no significant loss of stiffness following decellularization. The findings highlight the utility of cellularized macroporous gelatin microcarriers as self-adhering building blocks for the fabrication of living tubular structures.


Macroporous microcarriers Cultispher Tissue engineering Isotropic Elastic Biomaterial Elastin Collagen Endothelial cells Vascular smooth muscle cells Replacement blood vessels 



This work was supported by the National Science Foundation/EPSCoR Grant (EPS-0903795) and by NSF CMMI-1200358. We thank Dr. Amy Bradshaw for providing expert advice on Picrosirius red staining and polarized light microscopy. We thank Michael Gore (University of South Carolina School of Medicine) for his fabrication of templates.

Conflict of interest

No competing financial interests exist.


  1. 1.
    Auxenfans, C., C. Lequeux, E. Perrusel, A. Mojallal, B. Kinikoglu, and O. Damour. Adipose-derived stem cells (ASCs) as a source of endothelial cells in the reconstruction of endothelialized skin equivalents. J. Tissue Eng. Regenerative Med. 6(7):512–518, 2012.CrossRefGoogle Scholar
  2. 2.
    Bashur, C. A., L. Venkataraman, and A. Ramamurthi. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly. Tissue Eng. Part B, Rev. 18(3):203–217, 2012.Google Scholar
  3. 3.
    Bellingham, C. M., M. A. Lillie, J. M. Gosline, G. M. Wright, B. C. Starcher, A. J. Bailey, K. A. Woodhouse, and F. W. Keeley. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 70(4):445–455, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Borschel, G. H., Y. C. Huang, S. Calve, E. M. Arruda, J. B. Lynch, D. E. Dow, W. M. Kuzon, R. G. Dennis, and D. L. Brown. Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng. 11(5–6):778–786, 2005.PubMedCrossRefGoogle Scholar
  5. 5.
    Bradshaw, A. D., C. F. Baicu, T. J. Rentz, A. O. Van Laer, D. D. Bonnema, and M. R. Zile. Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am. J. Physiol. Heart Circ. Physiol. 298:H614–H622, 2009.Google Scholar
  6. 6.
    Buttafoco, L., P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes, and J. Feijen. Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials 27(11):2380–2389, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, M., X. Wang, Z. Ye, Y. Zhang, Y. Zhou, and W. S. Tan. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Biomaterials 32(30):7532–7542, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Clark, J. M., and M. D. Hirtenstein. Optimizing culture conditions for the production of animal cells in microcarrier culture. Ann. N. Y. Acad. Sci. 369:33–46, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Clavijo-Alvarez, J. A., V. T. Nguyen, L. Y. Santiago, J. S. Doctor, W. P. Lee, and K. G. Marra. Comparison of biodegradable conduits within aged rat sciatic nerve defects. Plast. Reconstr. Surg. 119(6):1839–1851, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Desai, M., A. M. Seifalian, and G. Hamilton. Role of prosthetic conduits in coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 40(2):394–398, 2011.PubMedGoogle Scholar
  11. 11.
    Dutt, K., G. Sanford, S. Harris-Hooker, L. Brako, R. Kumar, A. Sroufe, and C. Melhado. Three-dimensional model of angiogenesis: coculture of human retinal cells with bovine aortic endothelial cells in the NASA bioreactor. Tissue Eng. 9(5):893–908, 2003.PubMedCrossRefGoogle Scholar
  12. 12.
    Eldardiri, M., Y. Martin, J. Roxburgh, D. J. Lawrence-Watt, and J. R. Sharpe. Wound contraction is significantly reduced by the use of microcarriers to deliver keratinocytes and fibroblasts in an in vivo pig model of wound repair and regeneration. Tissue Eng. Part A 18(5–6):587–597, 2012.PubMedCrossRefGoogle Scholar
  13. 13.
    Epstein, A. J., D. Polsky, F. Yang, L. Yang, and P. W. Groeneveld. Coronary revascularization trends in the United States, 2001–2008. JAMA 305(17):1769–1776, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Faury, G. Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol. Biol. (Paris) 49(4):310–325, 2001.CrossRefGoogle Scholar
  15. 15.
    Gustafson, C. J., A. Birgisson, J. Junker, F. Huss, L. Salemark, H. Johnson, and G. Kratz. Employing human keratinocytes cultured on macroporous gelatin spheres to treat full thickness-wounds: an in vivo study on athymic rats. Burns 33(6):726–735, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Hibino, N., E. McGillicuddy, G. Matsumura, Y. Ichihara, Y. Naito, C. Breuer, and T. Shinoka. Late-term results of tissue-engineered vascular grafts in humans. J. Thorac. Cardiovasc. Surg. 139(2):431–436, 2010; 436:e431–e432.Google Scholar
  17. 17.
    Hirtenstein, M., J. Clark, G. Lindgren, and P. Vretblad. Microcarriers for animal cell culture: a brief review of theory and practice. Dev. Biol. Stand. 46:109–116, 1980.PubMedGoogle Scholar
  18. 18.
    Hoeve, C. A., and P. J. Flory. The elastic properties of elastin. Biopolymers 13(4):677–686, 1974.PubMedCrossRefGoogle Scholar
  19. 19.
    Kern, P. A., A. Knedler, and R. H. Eckel. Isolation and culture of microvascular endothelium from human adipose tissue. J. Clin. Invest. 71(6):1822–1829, 1983.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kielty, C. M., M. J. Sherratt, and C. A. Shuttleworth. Elastic fibres. J. Cell Sci. 115(Pt 14):2817–2828, 2002.PubMedGoogle Scholar
  21. 21.
    Kielty, C. M., S. Stephan, M. J. Sherratt, M. Williamson, and C. A. Shuttleworth. Applying elastic fibre biology in vascular tissue engineering. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484):1293–1312, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kim, S. S., S. J. Gwak, C. Y. Choi, and B. S. Kim. Skin regeneration using keratinocytes and dermal fibroblasts cultured on biodegradable microspherical polymer scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 75(2):369–377, 2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee, K. W., D. B. Stolz, and Y. Wang. Substantial expression of mature elastin in arterial constructs. Proc. Natl. Acad. Sci. USA. 108(7):2705–2710, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56, 1998.PubMedGoogle Scholar
  25. 25.
    Lillie, M. A., G. W. Chalmers, and J. M. Gosline. The effects of heating on the mechanical properties of arterial elastin. Connect. Tissue Res. 31(1):23–35, 1994.PubMedCrossRefGoogle Scholar
  26. 26.
    Lillie, M. A., G. J. David, and J. M. Gosline. Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue. Connect. Tissue Res. 37(1–2):121–141, 1998.PubMedCrossRefGoogle Scholar
  27. 27.
    Lin, K., Y. Matsubara, Y. Masuda, K. Togashi, T. Ohno, T. Tamura, Y. Toyoshima, K. Sugimachi, M. Toyoda, H. Marc, and A. Douglas. Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy 10(4):417–426, 2008.PubMedCrossRefGoogle Scholar
  28. 28.
    Lippens, E., G. Vertenten, J. Girones, H. Declercq, J. Saunders, J. Luyten, L. Duchateau, E. Schacht, L. Vlaminck, F. Gasthuys, and M. Cornelissen. Evaluation of bone regeneration with an injectable, in situ polymerizable Pluronic F127 hydrogel derivative combined with autologous mesenchymal stem cells in a goat tibia defect model. Tissue Eng. Part A 16(2):617–627, 2010.PubMedCrossRefGoogle Scholar
  29. 29.
    Liu, J. Y., J. Hafner, G. Dragieva, B. Seifert, and G. Burg. Autologous cultured keratinocytes on porcine gelatin microbeads effectively heal chronic venous leg ulcers. Wound Repair Regeneration 12(2):148–156, 2004.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu, W., and D. A. Saint. Validation of a quantitative method for real time PCR kinetics. Biochem. Biophys. Res. Commun. 294(2):347–353, 2002.PubMedCrossRefGoogle Scholar
  31. 31.
    Malda, J., and C. G. Frondoza. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 24(7):299–304, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Martin, Y., M. Eldardiri, D. J. Lawrence-Watt, and J. R. Sharpe. Microcarriers and their potential in tissue regeneration. Tissue Eng. Part B, Rev. 17(1):71–80, 2011.Google Scholar
  33. 33.
    Mecham, R. P., and E. C. Davis. Elastic fiber structure and assembly. In: Extracellular Matrix Assembly and Structure, edited by P. D. Yurchenco, D. E. Birk, and R. P. Mecham. New York, NY: Academic Press, 1994, pp. 281–314.CrossRefGoogle Scholar
  34. 34.
    Mei, Y., H. Luo, Q. Tang, Z. Ye, Y. Zhou, and W. S. Tan. Modulating and modeling aggregation of cell-seeded microcarriers in stirred culture system for macrotissue engineering. J. Biotechnol. 150(3):438–446, 2010.PubMedCrossRefGoogle Scholar
  35. 35.
    Mignot, G., T. Faure, V. Ganne, B. Arbeille, A. Pavirani, and J. L. Romet-Lemonne. Production of recombinant Von Willebrand factor by CHO cells cultured in macroporous microcarriers. Cytotechnology 4(2):163–171, 1990.PubMedCrossRefGoogle Scholar
  36. 36.
    Mitchell, S. L., and L. E. Niklason. Requirements for growing tissue-engineered vascular grafts. Cardiovasc. Pathol. 12(2):59–64, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Naito, Y., T. Shinoka, D. Duncan, N. Hibino, D. Solomon, M. Cleary, A. Rathore, C. Fein, S. Church, and C. Breuer. Vascular tissue engineering: towards the next generation vascular grafts. Adv. Drug Deliv. Rev. 63(4–5):312–323, 2011.PubMedCrossRefGoogle Scholar
  38. 38.
    Nikolai, T. J., and W. S. Hu. Cultivation of mammalian cells on macroporous microcarriers. Enzyme Microb. Technol. 14(3):203–208, 1992.PubMedCrossRefGoogle Scholar
  39. 39.
    Palmiero, C., G. Imparato, F. Urciuolo, and P. Netti. Engineered dermal equivalent tissue in vitro by assembly of microtissue precursors. Acta Biomater. 6(7):2548–2553, 2010.PubMedCrossRefGoogle Scholar
  40. 40.
    Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35(8):681–690, 1957.PubMedCrossRefGoogle Scholar
  41. 41.
    Rodriguez, L. V., Z. Alfonso, R. Zhang, J. Leung, B. Wu, and L. J. Ignarro. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc. Natl. Acad. Sci. USA. 103(32):12167–12172, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Seif-Naraghi, S. B., D. Horn, P. A. Schup-Magoffin, M. M. Madani, and K. L. Christman. Patient-to-patient variability in autologous pericardial matrix scaffolds for cardiac repair. J. Cardiovasc. Trans. Res. 4(5):545–556, 2011.CrossRefGoogle Scholar
  43. 43.
    Seland, H., C. J. Gustafson, H. Johnson, J. P. Junker, and G. Kratz. Transplantation of acellular dermis and keratinocytes cultured on porous biodegradable microcarriers into full-thickness skin injuries on athymic rats. Burns 37(1):99–108, 2011.PubMedCrossRefGoogle Scholar
  44. 44.
    Swartz, D. D., J. A. Russell, and S. T. Andreadis. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J Physiol. Heart Circ. Physiol. 288(3):H1451–H1460, 2005.Google Scholar
  45. 45.
    van Wezel, A. L. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216(5110):64–65, 1967.PubMedCrossRefGoogle Scholar
  46. 46.
    Voigt, M., M. Schauer, D. J. Schaefer, C. Andree, R. Horch, and G. B. Stark. Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full-thickness wounds. Tissue Eng. 5(6):563–572, 1999.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang, X., P. Lin, Q. Yao, and C. Chen. Development of small-diameter vascular grafts. World J. Surg. 31(4):682–689, 2007.PubMedCrossRefGoogle Scholar
  48. 48.
    Yang, Y., B. Hallgrimsson, and E. E. Putnins. Craniofacial defect regeneration using engineered bone marrow mesenchymal stromal cells. J. Biomed. Mater. Res., Part A 99(1):74–85, 2011.CrossRefGoogle Scholar
  49. 49.
    Zhao, S., and R. D. Fernald. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12(8):1047–1064, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Zou, Y., and Y. Zhang. An experimental and theoretical study on the anisotropy of elastin network. Ann. Biomed. Eng. 37(8):1572–1583, 2009.PubMedCrossRefGoogle Scholar
  51. 51.
    Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2):211–228, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Waleed O. Twal
    • 1
  • Sandra C. Klatt
    • 1
  • Keerthi Harikrishnan
    • 1
  • Ebtesam Gerges
    • 1
  • Marion A. Cooley
    • 1
  • Thomas C. Trusk
    • 1
  • Boran Zhou
    • 2
  • Mohamed G. Gabr
    • 2
  • Tarek Shazly
    • 2
    • 3
  • Susan M. Lessner
    • 2
    • 4
  • Roger R. Markwald
    • 1
  • W. Scott Argraves
    • 1
  1. 1.Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonUSA
  2. 2.College of Engineering and Computing, Biomedical Engineering ProgramUniversity of South CarolinaColumbiaUSA
  3. 3.College of Engineering and Computing, Mechanical Engineering DepartmentUniversity of South CarolinaColumbiaUSA
  4. 4.Department of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaUSA

Personalised recommendations