Annals of Biomedical Engineering

, Volume 42, Issue 1, pp 1–10 | Cite as

The Effect of Visual and Sensory Performance on Head Impact Biomechanics in College Football Players

  • Jacqueline A. Harpham
  • Jason P. MihalikEmail author
  • Ashley C. Littleton
  • Barnett S. Frank
  • Kevin M. Guskiewicz


The development of prevention strategies is critical to address the rising prevalence of sport-related concussions. Visual and sensory performance may influence an individual’s ability to interpret environmental cues, anticipate opponents’ actions, and create appropriate motor responses limiting the severity of an impending head impact. The purpose of this study was to determine the relationship between traditional and visual sensory reaction time measures, and the association between visual and sensory performance and head impact severity in college football players. Thirty-eight collegiate football players participated in the study. We used real-time data collection instrumentation to record head impact biomechanics during games and practices. Our findings reveal no significant correlations between reaction time on traditional and visual sensory measures. We found a significant association between head impact severity and level of visual and sensory performance for multiple assessments, with low visual and sensory performers sustaining a higher number of severe head impacts. Our findings reveal a link between level of visual and sensory performance and head impact biomechanics. Future research will allow clinicians to have the most appropriate testing batteries to identify at-risk athletes and create interventions to decrease their risk of injurious head impacts.


Concussion Football Injury prevention Kinematics Mild traumatic brain injury Sports biomechanics Vision 



This study was supported in part by the Centers for Disease Control and Prevention and the National Operating Committee on Standards for Athletic Equipment. None of the authors have any financial interest in any of the systems used for this study. We thank Nike for the provision of equipment used in this study.


  1. 1.
    201011 High School Athletics Participation Survey, 2011, The National Federation of State High School Associations. pp. 51–66.Google Scholar
  2. 2.
    Bailes, J. E., and R. C. Cantu. Head injury in athletes. Neurosurgery 48:26–45; discussion 45–46, 2001.Google Scholar
  3. 3.
    Beckwith, J. G., R. M. Greenwald, and J. J. Chu. Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform. Ann. Biomed. Eng. 40:237–248, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bracken, N. NCAA® Sports Sponsorship and Participation Rates Report, 2007. Indianapolis: The National Collegiate Athletic Association.Google Scholar
  5. 5.
    Crisco, J. J., J. J. Chu, and R. M. Greenwald. An algorithm for estimating acceleration magnitude and impact location using multiple nonorthogonal single-axis accelerometers. J. Biomech. Eng. 126:849–854, 2004.PubMedGoogle Scholar
  6. 6.
    Dick, R., M. S. Ferrara, J. Agel, R. Courson, S. W. Marshall, M. J. Hanley, and F. Reifsteck. Descriptive epidemiology of collegiate men’s football injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 through 2003–2004. J. Athl. Train. 42:221–233, 2007.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Duma, S. M., S. J. Manoogian, W. R. Bussone, P. G. Brolinson, M. W. Goforth, J. J. Donnenwerth, R. M. Greenwald, J. J. Chu, and J. J. Crisco. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sport Med. 15:3–8, 2005.PubMedCrossRefGoogle Scholar
  8. 8.
    Eckner, J. T., J. S. Kutcher, and J. K. Richardson. Pilot evaluation of a novel clinical test of reaction time in national collegiate athletic association division I football players. J. Athl. Train. 45:327–332, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Eckner, J. T., R. D. Whitacre, N. L. Kirsch, and J. K. Richardson. Evaluating a clinical measure of reaction time: an observational study. Percept. Mot. Skills 108:717–720, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Erickson, G. B., K. Citek, M. Cove, J. Wilczek, C. Linster, B. Bjarnason, and N. Langemo. Reliability of a computer-based system for measuring visual performance skills. Optometry 82:528–542, 2011.PubMedCrossRefGoogle Scholar
  11. 11.
    Gessel, L. M., S. K. Fields, C. L. Collins, R. W. Dick, and R. D. Comstock. Concussions among United States high school and collegiate athletes. J. Athl. Train. 42:495–503, 2007.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Gualtieri, C. T., and L. G. Johnson. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 21:623–643, 2006.PubMedCrossRefGoogle Scholar
  13. 13.
    Guskiewicz, K. M., and J. P. Mihalik. Biomechanics of sport concussion: quest for the elusive injury threshold. Exerc. Sport Sci. Rev. 39:4–11, 2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Holbourn, A. H. S. The mechanics of brain injuries. Br. Med. Bull. 3:147–149, 1945.Google Scholar
  15. 15.
    Kabat, M. H., R. L. Kane, A. L. Jefferson, and R. K. DiPino. Construct validity of selected Automated Neuropsychological Assessment Metrics (ANAM) battery measures. Clin. Neuropsychol. 15:498–507, 2001.PubMedCrossRefGoogle Scholar
  16. 16.
    Langlois, J. A., W. Rutland-Brown, and M. M. Wald. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21:375–378, 2006.PubMedCrossRefGoogle Scholar
  17. 17.
    Martell, S. G., and J. N. Vickers. Gaze characteristics of elite and near-elite athletes in ice hockey defensive tactics. Hum. Mov. Sci. 22:689–712, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    McCrory, P., W. Meeuwisse, K. Johnston, J. Dvorak, M. Aubry, M. Molloy, and R. Cantu. Consensus Statement on Concussion in Sport—The 3rd International Conference on Concussion in Sport Held in Zurich, November 2008. PM R, Vol. 1, pp. 406–420, 2009Google Scholar
  19. 19.
    Mihalik, J. P., D. R. Bell, S. W. Marshall, and K. M. Guskiewicz. Measurement of head impacts in collegiate football players: an investigation of positional and event-type differences. Neurosurgery 61:1229–1235, 2007.PubMedCrossRefGoogle Scholar
  20. 20.
    Mihalik, J. P., J. T. Blackburn, R. M. Greenwald, R. C. Cantu, S. W. Marshall, and K. M. Guskiewicz. Collision type and player anticipation affect head impact severity among youth ice hockey players. Pediatrics 125:e1394–e1401, 2010.PubMedCrossRefGoogle Scholar
  21. 21.
    Ocwieja, K. E., J. P. Mihalik, S. W. Marshall, J. D. Schmidt, S. C. Trulock, and K. M. Guskiewicz. The effect of play type and collision closing distance on head impact biomechanics. Ann. Biomed. Eng. 2011.Google Scholar
  22. 22.
    Ommaya, A. K., and T. A. Gennarelli. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 97:633–654, 1974.PubMedCrossRefGoogle Scholar
  23. 23.
    Rowson, S., and S. M. Duma. The Virginia tech response. Ann. Biomed. Eng. 40:2512–2518, 2012.PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rowson, S., and S. M. Duma. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration. Ann. Biomed. Eng. 41:873–882, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Savelsbergh, G. J., J. Van der Kamp, A. M. Williams, and P. Ward. Anticipation and visual search behaviour in expert soccer goalkeepers. Ergonomics 48:1686–1697, 2005.PubMedCrossRefGoogle Scholar
  26. 26.
    Segalowitz, S. J., P. Mahaney, D. L. Santesso, L. MacGregor, J. Dywan, and B. Willer. Retest reliability in adolescents of a computerized neuropsychological battery used to assess recovery from concussion. NeuroRehabilitation 22:243–251, 2007.PubMedGoogle Scholar
  27. 27.
    Stine, C. D., M. R. Arterburn, and N. S. Stern. Vision and sports: a review of the literature. J. Am. Optom. Assoc. 53:627–633, 1982.PubMedGoogle Scholar
  28. 28.
    van der Kamp, J. Exploring the merits of perceptual anticipation in the soccer penalty kick. Mot. Control 15:342–358, 2011.Google Scholar
  29. 29.
    Viano, D. C., C. Withnall, and D. Halstead. Impact performance of modern football helmets. Ann. Biomed. Eng. 40:160–174, 2012.PubMedCrossRefGoogle Scholar
  30. 30.
    Williams, A. M., K. Davids, L. Burwitz, and J. G. Williams. Visual search strategies in experienced and inexperienced soccer players. Res. Q. Exerc. Sport 65:127–135, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126:226–236, 2004.PubMedCrossRefGoogle Scholar
  32. 32.
    Zimmerman, A. B., K. L. Lust, and M. A. Bullimore. Visual acuity and contrast sensitivity testing for sports vision. Eye Contact Lens, 2011.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Jacqueline A. Harpham
    • 1
  • Jason P. Mihalik
    • 1
    • 2
    • 3
    Email author
  • Ashley C. Littleton
    • 1
  • Barnett S. Frank
    • 1
  • Kevin M. Guskiewicz
    • 1
    • 2
  1. 1.Matthew A. Gfeller Sport-Related Traumatic Brain Injury Research CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Injury Prevention Research CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of Exercise and Sport ScienceUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations