Annals of Biomedical Engineering

, Volume 42, Issue 2, pp 299–311

Chemical Tools for Temporally and Spatially Resolved Mass Spectrometry-Based Proteomics

Article

Abstract

Accurate measurements of the abundances, synthesis rates and degradation rates of cellular proteins are critical for understanding how cells and organisms respond to changes in their environments. Over the past two decades, there has been increasing interest in the use of mass spectrometry for proteomic analysis. In many systems, however, protein diversity as well as cell and tissue heterogeneity limit the usefulness of mass spectrometry-based proteomics. As a result, researchers have had difficulty in systematically identifying proteins expressed within specified time intervals, or low abundance proteins expressed in specific tissues or in a few cells in complex microbial systems. In this review, we present recently-developed tools and strategies that probe these two subsets of the proteome: proteins synthesized during well-defined time intervals—temporally resolved proteomics—and proteins expressed in predetermined cell types, cells or cellular compartments—spatially resolved proteomics—with a focus on chemical and biological mass spectrometry-based methodologies.

Keywords

Protein synthesis BONCAT SILAC APEX 

References

  1. 1.
    Aebersold, R., and M. Mann. Mass spectrometry-based proteomics. Nature 422:198–207, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Agard, N., J. Prescher, and C. Bertozzi. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126:15046–15047, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Ahrens, C. H., E. Brunner, E. Qeli, K. Basler, and R. Aebersold. Generating and navigating proteome maps using mass spectrometry. Nat. Rev. Mol. Cell Biol. 11:789–801, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Bantscheff, M., M. Schirle, G. Sweetman, J. Rick, and B. Kuster. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389:1017–1031, 2007.PubMedCrossRefGoogle Scholar
  5. 5.
    Bantscheff, M., S. Lemeer, M. H. Savitski, and B. Kuster. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404:939–965, 2012.PubMedCrossRefGoogle Scholar
  6. 6.
    Beatty, K., F. Xie, Q. Wang, and D. Tirrell. Selective dye-labeling of newly synthesized proteins in bacterial cells. J. Am. Chem. Soc. 127:14150–14151, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Beatty, K., J. Liu, F. Xie, D. Dieterich, E. Schuman, Q. Wang, and D. Tirrell. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew. Chem. Int. Ed. 45:7364–7367, 2006.CrossRefGoogle Scholar
  8. 8.
    Black, D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103:367–370, 2000.PubMedCrossRefGoogle Scholar
  9. 9.
    Boisvert, F. M., Y. W. Lam, D. Lamont, and A. I. Lamond. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol. Cell. Proteomics 9:457–470, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Brunet, I., C. Weinl, M. Piper, A. Trembleau, M. Volovitch, W. Harris, A. Prochiantz, and C. Holt. The transcription factor Engrailed-2 guides retinal axons. Nature 438:94–98, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Corthals, G. L., V. C. Wasinger, D. F. Hochstrasser, and J. C. Sanchez. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104–1115, 2000.PubMedCrossRefGoogle Scholar
  12. 12.
    Cox, J., N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen, and M. Mann. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10:1794–1805, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Deal, R. B., and S. Henikoff. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18:1030–1040, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Deal, R. B., J. G. Henikoff, and S. Henikoff. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–1164, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    de Godoy, L. M. F., J. V. Olsen, J. Cox, M. L. Nielsen, N. C. Hubner, F. Fröhlich, T. C. Walther, and M. Mann. Comprehensive mass spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1254, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    de Sousa Abreu, R., L. O. Penalva, E. M. Marcotte, and C. Vogel. Global signatures of protein and mRNA expression levels. Mol. Biosyst. 5:1512–1526, 2009.Google Scholar
  17. 17.
    Dieterich, D. C., A. J. Link, J. Graumann, D. A. Tirrell, and E. M. Schuman. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103:9482–9487, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Dieterich, D. C., J. Hodas, G. Gouzer, I. Shadrin, J. Ngo, A. Triller, D. Tirrell, and E. Schuman. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13:897–905, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Eichelbaum, K., M. Winter, M. B. Diaz, S. Herzig, and J. Krijgsveld. Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat. Biotechnol. 30:984–990, 2012.PubMedCrossRefGoogle Scholar
  20. 20.
    Essader, A. S., B. J. Cargile, J. L. Bundy, and J. L. Stephenson. A comparison of immobilized pH gradient isoelectric focusing and strong cation-exchange chromatography as a first dimension in shotgun proteomics. Proteomics 5:24–34, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Fredens, J., K. Engholm-Keller, A. Giessing, D. Pultz, M. R. Larsen, P. Højrup, J. Møller-Jensen, and N. J. Færgeman. Quantitative proteomics by amino acid labeling in C. elegans. Nat. Methods 8:845–847, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Friedel, C. C., L. Dolken, Z. Ruzsics, U. H. Koszinowski, and R. Zimmer. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res. 37:e115, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gay, L., M. R. Miller, P. B. Ventura, V. Devasthali, Z. Vue, H. L. Thompson, S. Temple, H. Zong, M. D. Cleary, K. Stankunas, and C. Q. Doe. Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev. 27:98–115, 2013.PubMedCrossRefGoogle Scholar
  24. 24.
    Golebiowski, F., I. Matic, M. H. Tatham, C. Cole, Y. Yin, A. Nakamura, J. Cox, G. J. Barton, M. Mann, and R. T. Hay. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2:ra24, 2009.Google Scholar
  25. 25.
    Grammel, M., M. M. Zhang, and H. C. Hang. Orthogonal alkynyl-amino acid reporter for selective labeling of bacterial proteomes during infection. Angew. Chem. Int. Ed. 49:5970–5974, 2010.CrossRefGoogle Scholar
  26. 26.
    Gresham, D., M. J. Dunham, and D. Botstein. Comparing whole genomes using DNA microarrays. Nat. Rev. Genet. 9:291–302, 2008.PubMedCrossRefGoogle Scholar
  27. 27.
    Gygi, S. P., B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold. Quantitative analysis of complex protein mixtures using isotope coded affinity tags. Nat. Biotechnol. 17:994–999, 1999.PubMedCrossRefGoogle Scholar
  28. 28.
    Henry, G. L., F. P. Davis, S. Picard, and S. R. Eddy. Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res. 40:9691–9704, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hinz, F. I., D. C. Dieterich, D. A. Tirrell, and E. M. Schuman. Noncanonical amino acid labeling in vivo to visualize and affinity purify newly synthesized proteins in larval zebrafish. ACS Chem. Neurosci. 3:40–49, 2012.PubMedCrossRefGoogle Scholar
  30. 30.
    Hodas, J. J. L., A. Nehring, N. Höche, M. J. Sweredoski, R. Pieolt, S. Hess, D. A. Tirrell, D. C. Dieterich, and E. M. Schuman. Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). Proteomics 12:2464–2476, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Howden, A. J. M., V. Geoghegan, K. Katsch, G. Efstathiou, B. Bhushan, O. Boutureira, B. Thomas, D. C. Trudgian, B. M. Kessler, D. C. Deiterich, B. G. Davis, and O. Acuto. QuaNCAT: quantitating proteome dynamics in primary cells. Nat. Methods 10:343–346, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Hughes, C., and J. Krijgsveld. Developments in quantitative mass spectrometry for the analysis of proteome dynamics. Trends Biotechnol. 30:668–676, 2012.PubMedCrossRefGoogle Scholar
  33. 33.
    Huo, Y., V. Iadevaia, Z. Yao, I. Kelly, S. Cosulich, S. Guichard, L. J. Foster, and C. G. Proud. Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis. Biochem. J. 444:141–151, 2012.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaller, M., S. T. Liffers, S. Oeljeklaus, K. Kuhlmann, S. Röh, R. Hoffmann, B. Warscheid, and H. Hermeking. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol. Cell. Proteomics 10:M111.010462, 2011.Google Scholar
  35. 35.
    Khidekel, N., S. B. Ficarro, E. C. Peters, and L. C. Hsieh-Wilson. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins. Proc. Natl. Acad. Sci. USA 101:13132–13137, 2004.PubMedCrossRefGoogle Scholar
  36. 36.
    Kiick, K. L., E. Saxon, D. A. Tirrell, and C. R. Bertozzi. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99:19–24, 2002.PubMedCrossRefGoogle Scholar
  37. 37.
    Kraft-Terry, S. D., and H. E. Gendelman. Proteomic biosignatures for monocyte-macrophage differentiation. Cell. Immunol. 271:239–255, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kramer, G., R. R. Sprenger, M. A. Nessen, W. Roseboom, D. Speijer, L. de Jong, M. J. de Mattos, J. Back, and C. G. de Koster. Proteome-wide alterations in Escherichia coli translation rates upon anaerobiosis. Mol. Cell. Proteomics 9:2508–2516, 2010.PubMedCrossRefGoogle Scholar
  39. 39.
    Kramer, G., R. R. Sprenger, J. Back, H. L. Dekker, M. A. Nessen, J. H. van Maarseveen, L. J. de Koning, K. J. Hellingwerf, D. de Jong, and C. G. de Koster. Identification and quantitation of newly synthesized proteins in Escherichia coli by enrichment of azidohomoalanine-labeled peptides with diagonal chromatography. Mol. Cell. Proteomics 8:1599–1611, 2009.PubMedCrossRefGoogle Scholar
  40. 40.
    Krijgsveld, J., R. F. Ketting, T. Mahmoudi, J. Johansen, M. Artal-Sanz, C. P. Verrijzer, R. H. A. Plasterk, and A. J. R. Heck. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol. 21:927–931, 2003.PubMedCrossRefGoogle Scholar
  41. 41.
    Krüger, M., M. Moser, S. Ussar, I. Thievessen, C. A. Luber, F. Forner, S. Schmidt, S. Zanivan, R. Fässler, and M. Mann. SILAC mouse for quantitative proteomics uncovers Kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Lam, Y. W., A. I. Lamond, M. Mann, and J. S. Andersen. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17:749–760, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Larance, M., A. P. Bailly, E. Pourkarimi, R. T. Hay, G. Buchanan, S. Coulthurst, D. P. Xirodimas, A. Gartner, and A. I. Lamond. Stable isotope labeling with amino acids in nematodes. Nat. Methods 8:849–851, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Larrabee, K. L., J. O. Phillips, G. J. Williams, and A. R. Larrabee. The relative rates of protein synthesis and degradation in a growing culture of Escherichia coli. J. Biol. Chem. 255:4125–4130, 1980.PubMedGoogle Scholar
  45. 45.
    Link, A. J., M. K. S. Vink, N. J. Agard, J. A. Prescher, C. R. Bertozzi, and D. A. Tirrell. Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc. Natl. Acad. Sci. USA 103:10180–10185, 2006.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu, J., Y. Xu, D. Stoleru, and A. Salic. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl. Acad. Sci. USA 109:413–418, 2012.PubMedCrossRefGoogle Scholar
  47. 47.
    Liu, K., P. Y. Yang, Z. Na, and S. Q. Yao. Dynamic monitoring of newly synthesized proteomes: up-regulation of myristoylated protein kinase A during butyric acid induced apoptosis. Angew. Chem. Int. Ed. 50:6776–6781, 2001.CrossRefGoogle Scholar
  48. 48.
    Mahdavi, A., T. H. Segall-Shaprio, S. Kou, G. A. Jindal, K. G. Hoff, S. Liu, M. Chitsaz, R. F. Ismagilov, J. J. Silberg, and D. A. Tirrell. A genetically encoded AND gate for cell-targeted metabolic labeling of proteins. J. Am. Chem. Soc. 135:2979–2982, 2013.PubMedCrossRefGoogle Scholar
  49. 49.
    Maier, T., M. Guell, and L. Serrano. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583:3966–3973, 2009.PubMedCrossRefGoogle Scholar
  50. 50.
    Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7:952–958, 2006.PubMedCrossRefGoogle Scholar
  51. 51.
    Martell, J. D., T. J. Deerinck, Y. Sancak, T. L. Poulos, V. K. Mootha, G. E. Sosinsky, M. H. Ellisman, and A. Y. Ting. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30:1143–1148, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Miller, M. R., K. J. Robinson, M. D. Cleary, and C. Q. Doe. TU-tagging: cell type-specific RNA isolation from intact complex tissues. Nat. Methods 6:439–441, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Milner, E., E. Barnea, I. Beer, and A. Admon. The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol. Cell. Proteomics 5:357–365, 2006.PubMedCrossRefGoogle Scholar
  54. 54.
    Mitulovíc, G., and K. Mechtler. HPLC techniques for proteomics analysis-a short overview of latest developments. Brief. Funct. Genomics Proteomics 5:249–260, 2006.CrossRefGoogle Scholar
  55. 55.
    Mosteller, R., R. Goldstein, and K. Nishimoto. Metabolism of individual proteins in exponentially growing Escherichia coli. J. Biol. Chem. 255:2524–2532, 1980.PubMedGoogle Scholar
  56. 56.
    Nessen, M. A., G. Kramer, J Back, J. M. Baskin, L. E. J. Smeenk, L. J. de Koning, J. H. van Maarseveen, L. de Jong, C. R. Bertozzi, H. Hiemstra, and C. G. de Koster. Selective enrichment of azide-containing peptides from complex mixtures. J. Proteome Res. 8:3702–3711, 2009.Google Scholar
  57. 57.
    Ngo, J. T., B. M. Babin, J. A. Champion, E. M. Schuman, and D. A. Tirrell. State-selective metabolic labeling of cellular proteins. ACS Chem. Biol. 7:1326–1330, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Ngo, J. T., E. M. Schuman, and D. A. Tirrell. Mutant methionyl-tRNA synthetase from bacteria enables site-selective N-terminal labeling of proteins expressed in mammalian cells. Proc. Natl. Acad. Sci. USA 110:4992–4997, 2013.PubMedCrossRefGoogle Scholar
  59. 59.
    Ngo, J. T., J. A. Champion, A. Mahdavi, I. C. Tanrikulu, K. E. Beatty, R. E. Conner, T. H. Yoo, D. C. Dieterich, E. M. Schuman, and D. A. Tirrell. Cell-selective metabolic labeling of proteins. Nat. Chem. Biol. 5:715–717, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Olsen, J. V., S.-E. Ong, and M. Mann. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3:608–614, 2004.PubMedCrossRefGoogle Scholar
  61. 61.
    Ong, S.-E., and M. Mann. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1:2650–2660, 2007.CrossRefGoogle Scholar
  62. 62.
    Patron, J. P., A. Fendler, M. Bild, U. Jung, H. Müller, M. Ø. Arntzen, C. Piso, C. Stephan, B. Thiede, H.-J. Mollenkopf, K. Jung, S. H. E. Kaufmann, and J. Schreiber. MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLOS ONE 7:e35, 345, 2012.Google Scholar
  63. 63.
    Picotti, P., B. Bodenmiller, L. N. Mueller, B. Domon, and R. Aebersold. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Picotti, P., M. Clément-Ziza, H. Lam, D. S. Campbell, A. Schmidt, E. W. Deutsch, H. Röst, Z. Sun, O. Rinner, L. Reiter, Q. Shen, J. J. Michaelson, A. Frei, S. Alberti, U. Kusebauch, B. Wollscheid, R. L. Moritz, A. Beyer, and R. Aebersold. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270, 2013.PubMedCrossRefGoogle Scholar
  65. 65.
    Pratt, J. M., J. Petty, I. Riba-Garcia, D. H. Robertson, S. J. Gaskell, S. G. Oliver, and R. J. Beynon. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics 1:579–591, 2002.PubMedCrossRefGoogle Scholar
  66. 66.
    Prescher, J., and C. Bertozzi. Chemistry in living systems. Nat. Chem. Biol. 1:13–21, 2005.PubMedCrossRefGoogle Scholar
  67. 67.
    Rabani, M., J. Z. Levin, L. Fan, X. Adiconis, R. Raychowdhury, M. Garber, A. Gnirke, C. Nusbaum, N. Hacohen, N. Friedman, I. Amit, and A. Regev. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29:436–442, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Ramsköld, D., S. Luo, Y. C. Wang, R. Li, Q. Deng, O. R. Faridani, G. A. Daniels, I. Khrebtukova, J. F. Loring, L. C. Laurent, G. P. Schroth, and R. Sandberg. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30:777–782, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Rappsilber, J., and M. Mann. What does it mean to identify a protein in proteomics? Trends Biochem. Sci. 27:74–78, 2002.PubMedCrossRefGoogle Scholar
  70. 70.
    Rechavi, O., M. Kalman, Y. Fang, H. Vernitsky, J. Jacob-Hirsch, L. J. Foster, Y. Kloog, and I. Goldstein. Trans-SILAC: sorting out the non-cell-autonomous proteome. Nat. Methods 7:923–927, 2010.PubMedCrossRefGoogle Scholar
  71. 71.
    Rhee, H.-W., P. Zou, N. D. Udeshi, J. D. Martell, V. K. Mootha, S. A. Carr, and A. Y. Ting. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Rostovtsev, V., L. Green, V. Fokin, and K. Sharpless. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ligation of azides and terminal alkynes. Angew. Chem. Int. Ed. 41:2596–2599, 2002.CrossRefGoogle Scholar
  73. 73.
    Sadygov, R. G., D. Cociorva, and J. R. Yates, III. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat. Methods 1:195–202, 2004.PubMedCrossRefGoogle Scholar
  74. 74.
    Saxon, E., and C. Bertozzi. Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010, 2000.PubMedCrossRefGoogle Scholar
  75. 75.
    Schwanhäusser, B., M. Gossen, G. Dittmar, and M. Selbach. Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209, 2009.PubMedCrossRefGoogle Scholar
  76. 76.
    Schwanhäusser, B., D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach. Global quantification of mammalian gene expression control. Nature 473:337–342, 2011.PubMedCrossRefGoogle Scholar
  77. 77.
    Selbach, M., B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin, and N. Rajewsky. Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63, 2008.PubMedCrossRefGoogle Scholar
  78. 78.
    Steen, H., and M. Mann. The abc’s (and xyz’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 5:699–711, 2004.PubMedCrossRefGoogle Scholar
  79. 79.
    Steiner, F. A., P. B. Talbert, S. Kasinathan, R. B. Deal, and S. Henikoff. Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res. 22:766–777, 2012.PubMedCrossRefGoogle Scholar
  80. 80.
    Sury, M. D., J. X. Chen, and M. Selbach. The SILAC fly allows for accurate protein quantification in vivo. Mol. Cell. Proteomics 9:2173–2183, 2010.PubMedCrossRefGoogle Scholar
  81. 81.
    Szychowski, J., A. Mahdavi, J. J. L. Hodas, J. D. Bagert, J. T. Ngo, P. Landgraf, D. C. Dieterich, E. M. Schuman, and D. A. Tirrell. Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. J. Am. Chem. Soc. 132:18351–18360, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Taniguchi, Y., P. J. Choi, G. W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, and X. S. Xie. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Tanrikulu, I. C., E. Schmitt, Y. Mechulam, W. A. Goddard, III, and D. A. Tirrell. Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo. Proc. Natl. Acad. Sci. USA 106:15285–15290, 2009.PubMedCrossRefGoogle Scholar
  84. 84.
    Tcherkezian, J., P. A. Brittis, F. Thomas, P. P. Roux, and J. G. Flanagan. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141:632–644, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Thingholm, T. E., O. N. Jensen, and M. R. Larsen. Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468, 2009.PubMedCrossRefGoogle Scholar
  86. 86.
    Tomlinson, E., N. Palaniyappan, D. Tooth, and R. Layfield. Methods for the purification of ubiquitinated proteins. Proteomics 7:1016–1022, 2007.PubMedCrossRefGoogle Scholar
  87. 87.
    Tornoe, C. W., C. Christensen, and M. Meldal. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67:3057–3064, 2002.PubMedCrossRefGoogle Scholar
  88. 88.
    Truong, F., T. H. Yoo, T. J. Lampo, and D. A. Tirrell. Two-strain, cell-selective protein labeling in mixed bacterial cultures. J. Am. Chem. Soc. 134:8551–8556, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Vogel, C., and E. M. Marcotte. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13:227–232, 2012.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Vogel, C., S. Abreu Rde, D. Ko, S. Y. Le, B. A. Shaprio, S. C. Burns, D. Sandhu, D. R. Boutz, E. M. Marcotte, and L. O. Penalva. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 6:400, 2010.Google Scholar
  91. 91.
    Wang, Z., M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Wiese, S., K. A. Reidegeld, H. E. Meyer, and B. Warscheid. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350, 2006.CrossRefGoogle Scholar
  93. 93.
    Yates, J. R., C. I. Ruse, and A. Nakorchevsky. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11:49–79, 2009.PubMedCrossRefGoogle Scholar
  94. 94.
    Yoon, B. C., H. Jung, A. Dwivedy, C. M. O’Hare, K. Zivraj, and C. E. Holt. Local translation of extranuclear lamin B promotes axon maintenance. Cell 148:752–764, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Zhang, L., H. Zhao, B. S. Blagg, and R. T. Dobrowsky. C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. J. Proteome Res. 11:2581–2593, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Zhang, M. M., L. K. Tsou, G. Charron, A. S. Raghavan, and H. C. Hang. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc. Natl. Acad. Sci. USA 107:8627–8632, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations