Annals of Biomedical Engineering

, Volume 41, Issue 12, pp 2501–2514 | Cite as

The Response of Pediatric Ribs to Quasi-static Loading: Mechanical Properties and Microstructure

  • Amanda M. Agnew
  • Kevin Moorhouse
  • Yun-Seok Kang
  • Bruce R. Donnelly
  • Kiel Pfefferle
  • Angela X. Manning
  • Alan S. Litsky
  • Rod Herriott
  • Mahmoud Abdel-Rasoul
  • John H. BolteIV


Traumatic injury is a major cause of death in the child population. Motor vehicle crashes account for a large portion of these deaths, and a considerable effort is put forth by the safety community to identify injury mechanisms and methods of injury prevention. However, construction of biofidelic anthropomorphic test devices and computational models for this purpose requires knowledge of bone properties that is difficult to obtain. The objective of this study is to characterize the relationship between mechanical properties and measures of skeletal development in the growing rib. Anterolateral segments of 44 ribs from 12 pediatric individuals (age range: 5 months to 9 years) were experimentally tested in three-point bending. Univariate mixed models were used to assess the predictive abilities of development-related variables (e.g., age, stature, histomorphometry, cross-sectional geometry) on mechanical variables (material and structural properties). Results show that stature, in addition to age, may be a reliable predictor of bone strength, and that histomorphometry has potential to explain bone properties and to further our understanding of fracture mechanisms. For example, percent secondary lamellar bone (%Sd.Ar) successfully predicts peak force (F P) and Young’s modulus (E). Application of these findings is not restricted to injury biomechanics, but can also be referenced in forensic and anthropological contexts.


Histomorphometry Bone growth Three-point bending Injury biomechanics Thorax 



With much gratitude, we would like to thank all the donors and their families who made this research possible. This research was sponsored by the National Highway Traffic Safety Administration (NHTSA), specifically the Vehicle Research and Test Center (VRTC). A Dwight D. Eisenhower Fellowship from the Federal Highway Administration (FHA) supported a graduate student on this project. The authors thank those from Nationwide Children’s Hospital: Peter Baker, Emily Chenever, Anna Hughes, and Gary Smith, and past students of the Injury Biomechanics Research Laboratory: Hannah Gustafson, Brian Suntay, Tony Vergis, and J. Jared Guth. Additionally, we would like to thank the Associate Editor, Joel Stitzel, and three anonymous reviewers for their constructive comments and assistance in improving this manuscript. The views conveyed in this manuscript reflect those of the authors and do not necessary reflect the views of their affiliated organizations or sponsors.


  1. 1.
    Agnew, A. M., M. A. Streeter, and S. D. Stout. Histomorphological aging of subadults: a test of Streeter’s method on a medieval archaeological population. Am. J. Phys. Anthropol. 44:61, 2007.Google Scholar
  2. 2.
    Bachrach, L. Measuring bone mass in children: can we really do it? Hormone Res. 65:11–16, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Biewener, A. Biomechanics: Structure and Systems. Oxford: Oxford University Press, 1992.Google Scholar
  4. 4.
    Binkley, T. L., R. Berry, and B. L. Specker. Methods for measurement of pediatric bone. Rev. Endocr. Metab. Disord. 9:95–106, 2008.PubMedCrossRefGoogle Scholar
  5. 5.
    Boresi, A., R. Schmidt, and O. Sidebottom. Advanced Mechanics of Materials. Somerset, NJ: Wiley, 1993.Google Scholar
  6. 6.
    Carter, D. Biomechanics of bone. In: The Biomechanics of Trauma, edited by A. Nahum, and J. Melvin. Norwalk, CT: Appleton-Century-Crofts, 1985.Google Scholar
  7. 7.
    Carter, D., and W. Hayes. Bone compressive strength: the influence of density and strain rate. Science 194:1174–1176, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Carter, D., W. Hayes, and D. Schurman. Fatigue life of compact bone-II. Effects of microstructures and density. J. Biomech. 9:211–218, 1976.PubMedCrossRefGoogle Scholar
  9. 9.
    Cormier, J. M., J. D. Stitzel, S. M. Duma, and F. Matsuoka. Regional variation in the structural response and geometrical properties of human ribs. Ann. Adv. Automot. Med. 49:153–170, 2005.Google Scholar
  10. 10.
    Cowin, S. C. (ed.) Bone Mechanics Handbook (2nd ed.). New York: CRC Press, 2001.Google Scholar
  11. 11.
    Currey, J. D. Differences in the tensile strength of bone of different histological types. J. Anat. 93:87–95, 1959.PubMedGoogle Scholar
  12. 12.
    Currey, J. D. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21:131–139, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Currey, J. D. Bones: Structure and Mechanics. Princeton: Princeton University Press, 2002.Google Scholar
  14. 14.
    Currey, J. D., K. Brear, and P. Zioupos. The effects of ageing and changes in mineral content in degrading the toughness of human femora. J. Biomech. 29:257–260, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Currey, J. D., and G. Butler. The mechanical properties of bone tissue in children. J. Bone Jt. Surg. 57A:810–814, 1975.Google Scholar
  16. 16.
    Epker, B., and H. Frost. Correlation of bone resorption and formation with the physical behavior of loaded bone. J. Dent. Res. 44:33–41, 1965.PubMedCrossRefGoogle Scholar
  17. 17.
    Felsenberg, D., and S. Boonen. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin. Ther. 27:1–11, 2005.PubMedCrossRefGoogle Scholar
  18. 18.
    Fildes, B., J. Charlton, M. Fitzharris, K. Langwieder, and T. Hummel. Injuries to children in child restraints. Int. J. Crashworth. 8:277–284, 2003.CrossRefGoogle Scholar
  19. 19.
    Franklyn, M., S. Peiris, C. Huber, and K. H. Yang. Pediatric material properties: a review of human child and animal surrogates. Crit. Rev. Biomed. Eng. 35:197–342, 2007.PubMedCrossRefGoogle Scholar
  20. 20.
    Frost, H. M. Tetracycline-based histological analysis of bone remodeling. Calcif. Tissue Res. 3:211–237, 1969.PubMedCrossRefGoogle Scholar
  21. 21.
    Frost, H. M. Mechanical determinants of bone modeling. Metab. Bone Dis. Relat. Res. 4:217–229, 1982.PubMedCrossRefGoogle Scholar
  22. 22.
    Frost, H. M. Secondary osteon populations: an algorithm for determining mean bone tissue age. Yearb. Phys. Anthropol. 30:221–238, 1987.CrossRefGoogle Scholar
  23. 23.
    Frost, H. M. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s Law: the bone modeling problem. Anat. Rec. 226:403–413, 1990.PubMedCrossRefGoogle Scholar
  24. 24.
    Frost, H. M. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat. Rec. 262(398–419):2001, 2001.Google Scholar
  25. 25.
    Granik, G., and I. Stein. Human ribs: static testing as a promising medical application. J. Biomech. 6:237–240, 1973.PubMedCrossRefGoogle Scholar
  26. 26.
    Hernandez, C. J. How can bone turnover modify bone strength independent of bone mass? Bone 42:1014–1020, 2008.PubMedCrossRefGoogle Scholar
  27. 27.
    Kemper, A., C. McNally, C. Pullins, L. Freeman, S. M. Duma, and S. Rouhana. The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests. Stapp Car Crash J. 51:1–39, 2007.Google Scholar
  28. 28.
    Kerley, E. R. The microscopic determination of age in human bone. Am. J. Phys. Anthropol. 23:149–164, 1965.PubMedCrossRefGoogle Scholar
  29. 29.
    Landeros, O., and H. Frost. Comparison of amounts of remodeling activity in opposite cortices of ribs in children and adults. J. Dent. Res. 45:152–158, 1966.PubMedCrossRefGoogle Scholar
  30. 30.
    Linde, F., and H. Sorensen. The effect of different storage methods on the mechanical properties of trabecular bone. J. Bioemech. 26:1249–1252, 1993.CrossRefGoogle Scholar
  31. 31.
    Liu, D., H. D. Wagner, and S. Weiner. Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia. J. Mater. Sci. 11:49–60, 2000.Google Scholar
  32. 32.
    Maggiano, C. Making the mold: a microstructural perspective on bone modeling during growth and mechanical adaptation. In: Bone Histology: Anthropological Perspectives, edited by C. Crowder, and S. Stout. New York: CRC Press, 2011, pp. 45–90.CrossRefGoogle Scholar
  33. 33.
    Maggiano, I., C. Maggiano, V. Tiesler, H. Kierdorf, S. D. Stout, and M. Schultz. A distinct region of microarchitectural variation in femoral compact bone: histomorphology of the endosteal lamellar pocket. Int. J. Osteoarchaeol. 21:743–750, 2011.CrossRefGoogle Scholar
  34. 34.
    Margulies, S., and K. Thibault. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J. Biomech. Eng. 122:364–371, 2000.PubMedCrossRefGoogle Scholar
  35. 35.
    Martin, R. B. Porosity and specific surface of bone. Crit. Rev. Biomed. Eng. 10:179–222, 1984.PubMedGoogle Scholar
  36. 36.
    Martin, R., and D. Boardman. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bending properties. J. Biomech. 26:1047–1054, 1993.PubMedCrossRefGoogle Scholar
  37. 37.
    McCalden, R. W., J. A. McGeough, M. Barker, and C. M. Court-Brown. Age related changes in the tensile properties of cortical bone: the relative importance of changes in porosity, mineralization, and microstructure. J. Bone Jt. Surg. 75:1193–1205, 1993.Google Scholar
  38. 38.
    NHTSA. Children. Traffic Safety Facts, DOT HS 811 387, 2009.Google Scholar
  39. 39.
    Ohman, C., M. Baleani, C. Pani, F. Taddei, M. Alberghini, M. Viceconti, and M. Manfrini. Compressive behavior of child and adult cortical bone. Bone 49:769–776, 2011.PubMedCrossRefGoogle Scholar
  40. 40.
    Parfitt, A. M. The two faces of growth: benefits and risks to bone integrity. Osteoporos. Int. 4:382–398, 1994.PubMedCrossRefGoogle Scholar
  41. 41.
    Rho, J. Y., P. Zioupos, J. D. Currey, and G. M. Pharr. Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J. Biomech. 35:189–198, 2002.PubMedCrossRefGoogle Scholar
  42. 42.
    Riggs, B. L., S. Khosla, and L. J. Melton. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 23:279–302, 2002.PubMedCrossRefGoogle Scholar
  43. 43.
    Ruff, C. MomentMacroJ program [Internet]. Available from
  44. 44.
    Saha, S., and W. C. Hayes. Relations between tensile impact properties and microstructure of compact bone. Calcif. Tissue Res. 24:65–72, 1977.PubMedCrossRefGoogle Scholar
  45. 45.
    Schaffler, M. B., and D. B. Burr. Stiffness of compact bone: effects of porosity and density. J. Biomech. 21:13–16, 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Sedlin, E. D. The ratio of cortical area to total cross-section area in rib diaphysis: a quantitative index of osteoporoses. Clin. Orthop. 36:161–168, 1964.Google Scholar
  47. 47.
    Sedlin, E. D., H. Frost, and A. Villanueva. Age changes in resorption in the human rib cortex. J. Gerontol. 18:345–349, 1963.PubMedCrossRefGoogle Scholar
  48. 48.
    Sedlin, E., and C. Hirsch. Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop. Scand. 37:29–48, 1966.PubMedCrossRefGoogle Scholar
  49. 49.
    Stevens, K. Statics and Strength of Materials. Englewood Cliffs: Prentice-Hall, Inc., 1987.Google Scholar
  50. 50.
    Stitzel, J., J. M. Cormier, J. T. Barretta, E. Kennedy, E. P. Smith, A. L. Rath, S. M. Duma, and F. Matsuoka. Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction. Stapp Car Crash J. 47:243–265, 2003.PubMedGoogle Scholar
  51. 51.
    Streeter, M. Histomorphometric Characteristics of the Subadult Rib Cortex: Normal Patterns of Dynamic Bone Modeling and Remodeling During Growth and Development [PhD dissertation]. Columbia: University of Missouri-Columbia, p. 182, 2005.Google Scholar
  52. 52.
    Takahashi, H., and H. Frost. Age and sex related changes in the amount of cortex of normal human ribs. Acta Orthop. Scand. 37:122–130, 1966.PubMedCrossRefGoogle Scholar
  53. 53.
    Theis, M. Untersuchung der dynamischen und statischen Biegebelastung frischer menschlicher Rippen in Abhängigkeit zu Alter und Geschlecht. Inaugural-Dissertation, Ruprecht-Karl-Universität Heidelberg, 1975. [from Sturtz, G. Biomechanical data of children. Stapp Car Crash J. 24:511–549, 1980]Google Scholar
  54. 54.
    Todoh, M., S. Tadano, B. Giri, and M. Nishimoto. Effect of gradual demineralization on the mineral fraction and mechanical properties of cortical bone. J. Biomech. Sci. Eng. 4:230–238, 2009.CrossRefGoogle Scholar
  55. 55.
    Turner, C. H., and D. B. Burr. Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608, 1993.PubMedCrossRefGoogle Scholar
  56. 56.
    Vincentelli, R., and M. Grigorov. The effect of haversian remodeling on the tensile properties of human cortical bone. J. Biomech. 18:201–207, 1985.PubMedCrossRefGoogle Scholar
  57. 57.
    Wagner, H. D., and S. Weiner. On the relationship between the microstructure of bone and its mechanical stiffness. J. Biomech. 25:1311–1320, 1992.PubMedCrossRefGoogle Scholar
  58. 58.
    Williams, B., D. Waddington, D. H. Murray, and C. Farquharson. Bone strength during growth: influence of growth rate on cortical porosity and mineralization. Calcif. Tissue Int. 74:236–245, 2004.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu, K., K. Schubeck, H. Frost, and A. Villanueva. Haversian bone formation rates determined by a new method in a mastodon, and in human diabetes mellitus and osteoporosis. Calcif. Tissue Res. 6:204–219, 1970.PubMedCrossRefGoogle Scholar
  60. 60.
    Yoganandan, N., and F. Pintar. Biomechanics of human thoracic ribs. J. Biomech. Eng. 120:100–104, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Amanda M. Agnew
    • 1
  • Kevin Moorhouse
    • 2
  • Yun-Seok Kang
    • 1
  • Bruce R. Donnelly
    • 2
  • Kiel Pfefferle
    • 1
  • Angela X. Manning
    • 1
  • Alan S. Litsky
    • 3
  • Rod Herriott
    • 4
  • Mahmoud Abdel-Rasoul
    • 5
  • John H. BolteIV
    • 1
  1. 1.Injury Biomechanics Research Center, Division of AnatomyThe Ohio State UniversityColumbusUSA
  2. 2.Vehicle Research and Test Center (VRTC)National Highway Traffic and Safety Administration (NHTSA)East LibertyUSA
  3. 3.Orthopaedic BioMaterials LaboratoryThe Ohio State UniversityColumbusUSA
  4. 4.Transportation Research Center (TRC) Inc.East LibertyUSA
  5. 5.Center for BiostatisticsThe Ohio State UniversityColumbusUSA

Personalised recommendations