Annals of Biomedical Engineering

, Volume 41, Issue 12, pp 2553–2564

Quantitative In Vivo HR-pQCT Imaging of 3D Wrist and Metacarpophalangeal Joint Space Width in Rheumatoid Arthritis

  • Andrew J. Burghardt
  • Chan Hee Lee
  • Daniel Kuo
  • Sharmila Majumdar
  • John B. Imboden
  • Thomas M. Link
  • Xiaojuan Li


In this technique development study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was applied to non-invasively image and quantify 3D joint space morphology of the wrist and metacarpophalangeal (MCP) joints of patients with rheumatoid arthritis (RA). HR-pQCT imaging (82 μm voxel-size) of the dominant hand was performed in patients with diagnosed rheumatoid arthritis (RA, N = 16, age: 52.6 ± 12.8) and healthy controls (CTRL, N = 7, age: 50.1 ± 15.0). An automated computer algorithm was developed to segment wrist and MCP joint spaces. The 3D distance transformation method was applied to spatially map joint space width, and summarized by the mean joint space width (JSW), minimal and maximal JSW (JSW.MIN, JSW.MAX), asymmetry (JSW.AS), and distribution (JSW.SD)—a measure of joint space heterogeneity. In vivo precision was determined for each measure by calculating the smallest detectable difference (SDD) and root mean square coefficient of variation (RMSCV%) of repeat scans. Qualitatively, HR-pQCT images and pseudo-color JSW maps showed global joint space narrowing, as well as regional and focal abnormalities in RA patients. In patients with radiographic JSN at an MCP, JSW.SD was two-fold greater vs. CTRL (p < 0.01), and JSW.MIN was more than two-fold lower (p < 0.001). Similarly, JSW.SD was significantly greater in the wrist of RA patients vs. CTRL (p < 0.05). In vivo precision was highest for JSW (SDD: 100 μm, RMSCV: 2.1%) while the SDD for JSW.MIN and JSW.SD were 370 and 110 μm, respectively. This study suggests that in vivo quantification of 3D joint space morphology from HR-pQCT, could improve early detection of joint damage in rheumatological diseases.


HR-pQCT Rheumatoid arthritis Hand, bone, image processing Joint space width Computed tomography 



High-resolution peripheral quantitative computed tomography


Rheumatoid arthritis




Disease-modifying antrirheumatic drug










Volume of interest


Smallest detectable difference


Joint space narrowing


Joint space volume


Joint space width


JSW minimum


JSW maximum


JSW standard deviation (heterogeneity)


JSW asymmetry


  1. 1.
    Aletaha, D., J. Funovits, and J. S. Smolen. Physical disability in rheumatoid arthritis is associated with cartilage damage rather than bone destruction. Ann. Rheum. Dis. 70(5):733–739, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Barnabe, C., and L. Feehan. High-resolution peripheral quantitative computed tomography imaging protocol for metacarpophalangeal joints in inflammatory arthritis: the SPECTRA collaboration. J. Rheumatol. 39(7):1494–1495, 2012.PubMedCrossRefGoogle Scholar
  3. 3.
    Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310, 1986.PubMedCrossRefGoogle Scholar
  4. 4.
    Boutroy, S., M. L. Bouxsein, F. Munoz, and P. D. Delmas. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90(12):6508–6515, 2005.PubMedCrossRefGoogle Scholar
  5. 5.
    Boutroy, S., B. Van Rietbergen, E. Sornay-Rendu, F. Munoz, M. L. Bouxsein, and P. D. Delmas. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 23(3):392–399, 2008.PubMedCrossRefGoogle Scholar
  6. 6.
    Buie, H. R., G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41(4):505–515, 2007.PubMedCrossRefGoogle Scholar
  7. 7.
    Burghardt, A. J., J. B. Pialat, G. J. Kazakia, S. Boutroy, K. Engelke, J. M. Patsch, A. Valentinitsch, D. Liu, E. Szabo, C. E. Bogado, M. B. Zanchetta, H. A. McKay, E. Shane, S. K. Boyd, M. L. Bouxsein, R. Chapurlat, S. Khosla, and S. Majumdar. Multi-center precision of cortical and trabecular bone quality measures assessed by HR-PQCT. J. Bone Miner. Res. 28(3):524–536, 2013.Google Scholar
  8. 8.
    Burghardt, A. J., H. R. Buie, A. Laib, S. Majumdar, and S. K. Boyd. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Burghardt, A. J., G. J. Kazakia, and S. Majumdar. A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone. Ann. Biomed. Eng. 35(10):1678–1686, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Burghardt, A. J., G. J. Kazakia, S. Ramachandran, T. M. Link, and S. Majumdar. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J. Bone Miner. Res. 25(5):983–993, 2010.PubMedGoogle Scholar
  11. 11.
    Burrows, M., D. Liu, and H. McKay. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos. Int. 21(3):515–520, 2010.PubMedCrossRefGoogle Scholar
  12. 12.
    Dalzell, N., S. Kaptoge, N. Morris, A. Berthier, B. Koller, L. Braak, B. van Rietbergen, and J. Reeve. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos. Int. 20(10):1683–1694, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Edmonds, J., and M. Lassere. Imaging damage: scoring versus measuring. J. Rheumatol. 28(8):1749–1751, 2001.PubMedGoogle Scholar
  14. 14.
    Engelke, K., B. Stampa, W. Timm, B. Dardzinski, A. E. de Papp, H. K. Genant, and T. Fuerst. Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos. Int. 23(8):2151–2158, 2012.PubMedCrossRefGoogle Scholar
  15. 15.
    Feldkamp, L. A., L. C. Davis, and J. W. Kress. Practical cone-beam algorithm. J. Opt. Soc. Am. A: 1:612–619, 1984.CrossRefGoogle Scholar
  16. 16.
    Finzel, S., M. Englbrecht, K. Engelke, C. Stach, and G. Schett. A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann. Rheum. Dis. 70(1):122–127, 2011.PubMedCrossRefGoogle Scholar
  17. 17.
    Fouque-Aubert, A., S. Boutroy, H. Marotte, N. Vilayphiou, E. Lespessailles, C. L. Benhamou, P. Miossec, and R. Chapurlat. Assessment of hand trabecular bone texture with high resolution direct digital radiograph in rheumatoid arthritis: a case control study. Joint, Bone, Spine: revue du rhumatisme 79(4):379–383, 2012.CrossRefGoogle Scholar
  18. 18.
    Hildebrand, T., and P. Ruegsegger. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185:67–75, 1997.CrossRefGoogle Scholar
  19. 19.
    Khosla, S., B. L. Riggs, E. J. Atkinson, A. L. Oberg, L. J. McDaniel, M. Holets, J. M. Peterson, and L. J. Melton, 3rd. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21(1):124–131, 2006.PubMedCrossRefGoogle Scholar
  20. 20.
    Kirmani, S., D. Christen, G. H. van Lenthe, P. R. Fischer, M. L. Bouxsein, L. K. McCready, L. J. Melton, 3rd, B. L. Riggs, S. Amin, R. Muller, and S. Khosla. Bone structure at the distal radius during adolescent growth. J. Bone Miner. Res. 24(6):1033–1042, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Laib, A., H. J. Hauselmann, and P. Ruegsegger. In vivo high resolution 3D-QCT of the human forearm. Technol. Health Care 6(5–6):329–337, 1998.PubMedGoogle Scholar
  22. 22.
    Laib, A., and P. Ruegsegger. Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput. Med. Imaging Graph. 23(2):69–74, 1999.PubMedCrossRefGoogle Scholar
  23. 23.
    Landewe, R., and D. van der Heijde. Joint space narrowing, cartilage and physical function: are we deceived by measurements and distributions? Ann. Rheum. Dis. 70(5):717–718, 2011.PubMedCrossRefGoogle Scholar
  24. 24.
    Lassere, M., M. Boers, D. van der Heijde, A. Boonen, J. Edmonds, A. Saudan, and A. C. Verhoeven. Smallest detectable difference in radiological progression. J. Rheumatol. 26(3):731–739, 1999.PubMedGoogle Scholar
  25. 25.
    Liu, X. S., X. H. Zhang, K. K. Sekhon, M. F. Adams, D. J. McMahon, J. P. Bilezikian, E. Shane, and X. E. Guo. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J. Bone Miner. Res. 25(4):746–756, 2010.PubMedGoogle Scholar
  26. 26.
    Macdonald, H. M., K. K. Nishiyama, J. Kang, D. A. Hanley, and S. K. Boyd. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J. Bone Miner. Res. 26(1):50–62, 2011.PubMedCrossRefGoogle Scholar
  27. 27.
    MacNeil, J. A., and S. K. Boyd. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 29(10):1096–1105, 2007.PubMedCrossRefGoogle Scholar
  28. 28.
    Macneil, J. A., and S. K. Boyd. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6):1203–1213, 2008.PubMedCrossRefGoogle Scholar
  29. 29.
    MacNeil, J. A., and S. K. Boyd. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 30(6):792–799, 2008.PubMedCrossRefGoogle Scholar
  30. 30.
    Pauchard, Y., A. M. Liphardt, H. M. Macdonald, D. A. Hanley, and S. K. Boyd. Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone 50(6):1304–1310, 2012.PubMedCrossRefGoogle Scholar
  31. 31.
    Peloschek, P., G. Langs, M. Weber, J. Sailer, M. Reisegger, H. Imhof, H. Bischof, and F. Kainberger. An automatic model-based system for joint space measurements on hand radiographs: initial experience. Radiology 245(3):855–862, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Pialat, J. B., A. J. Burghardt, M. Sode, T. M. Link, and S. Majumdar. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50(1):111–118, 2012.PubMedCrossRefGoogle Scholar
  33. 33.
    Sharp, J. T., J. Angwin, M. Boers, J. Duryea, A. Finckh, J. R. Hall, J. A. Kauffman, R. Landewe, G. Langs, C. Lukas, H. J. Moens, P. Peloschek, C. V. Strand, and D. van der Heijde. Multiple computer-based methods of measuring joint space width can discriminate between treatment arms in the COBRA trial—update of an ongoing OMERACT project. J. Rheumatol. 36(8):1825–1828, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Sharp, J. T., J. Angwin, M. Boers, J. Duryea, G. von Ingersleben, J. R. Hall, J. A. Kauffman, R. Landewe, G. Langs, C. Lukas, J. F. Maillefert, H. J. Bernelot Moens, P. Peloschek, V. Strand, and D. van der Heijde. Computer based methods for measurement of joint space width: update of an ongoing OMERACT project. J. Rheumatol. 34(4):874–883, 2007.Google Scholar
  35. 35.
    Sharp, J. T., D. van der Heijde, J. Angwin, J. Duryea, H. J. Moens, J. W. Jacobs, J. F. Maillefert, and C. V. Strand. Measurement of joint space width and erosion size. J. Rheumatol. 32(12):2456–2461, 2005.PubMedGoogle Scholar
  36. 36.
    Sode, M., A. J. Burghardt, J. B. Pialat, T. M. Link, and S. Majumdar. Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia. Bone 48(6):1291–1297, 2011.PubMedCrossRefGoogle Scholar
  37. 37.
    Sornay-Rendu, E., S. Boutroy, F. Munoz, and P. D. Delmas. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J. Bone Miner. Res. 22(3):425–433, 2007.PubMedCrossRefGoogle Scholar
  38. 38.
    Srikhum, W., W. Virayavanich, A. J. Burghardt, A. Yu, T. M. Link, J. B. Imboden, and X. Li. Quantitative and semiquantitative bone erosion assessment on high-resolution peripheral quantitative computed tomography in rheumatoid arthritis. J. Rheumatol. 40(4):408–416, 2013.Google Scholar
  39. 39.
    Stach, C. M., M. Bauerle, M. Englbrecht, G. Kronke, K. Engelke, B. Manger, and G. Schett. Periarticular bone structure in rheumatoid arthritis patients and healthy individuals assessed by high-resolution computed tomography. Arthritis Rheum. 62(2):330–339, 2010.PubMedGoogle Scholar
  40. 40.
    Stein, E. M., X. S. Liu, T. L. Nickolas, A. Cohen, V. Thomas, D. J. McMahon, C. Zhang, P. T. Yin, F. Cosman, J. Nieves, X. E. Guo, and E. Shane. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J. Bone Miner. Res. 25(12):2572–2581, 2010.PubMedCrossRefGoogle Scholar
  41. 41.
    Tjong, W., G. J. Kazakia, A. J. Burghardt, and S. Majumdar. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med. Phys. 39(4):1893–1903, 2012.PubMedCrossRefGoogle Scholar
  42. 42.
    van der Heijde, D. How to read radiographs according to the Sharp/van der Heijde method. J. Rheumatol. 27(1):261–263, 2000.PubMedGoogle Scholar
  43. 43.
    Vico, L., M. Zouch, A. Amirouche, D. Frere, N. Laroche, B. Koller, A. Laib, T. Thomas, and C. Alexandre. High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J. Bone Miner. Res. 23(11):1741–1750, 2008.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhu, T. Y., J. F. Griffith, L. Qin, V. W. Hung, T. N. Fong, S. K. Au, X. L. Tang, A. W. Kwok, P. C. Leung, E. K. Li, and L. S. Tam. Structure and strength of the distal radius in female patients with rheumatoid arthritis: a case-control study. J. Bone Miner. Res. 28(4):794–806, 2013.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Andrew J. Burghardt
    • 1
  • Chan Hee Lee
    • 1
    • 2
  • Daniel Kuo
    • 1
  • Sharmila Majumdar
    • 1
  • John B. Imboden
    • 3
    • 4
  • Thomas M. Link
    • 1
  • Xiaojuan Li
    • 1
  1. 1.Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Division of Rheumatology, Department of Internal MedicineNHIC Ilsan HospitalGoyang-siSouth Korea
  3. 3.Department of MedicineUniversity of California, San FranciscoSan FranciscoUSA
  4. 4.Division of RheumatologySan Francisco General HospitalSan FranciscoUSA

Personalised recommendations