Annals of Biomedical Engineering

, Volume 42, Issue 2, pp 312–322

PEG–Maleimide Hydrogels for Protein and Cell Delivery in Regenerative Medicine



Protein- and cell-based therapies represent highly promising strategies for regenerative medicine, immunotherapy, and oncology. However, these therapies are significantly limited by delivery considerations, particularly in terms of protein stability and dosing kinetics as well as cell survival, engraftment, and function. Hydrogels represent versatile and robust delivery vehicles for proteins and cells due to their high water content that retains protein biological activity, high cytocompatibility and minimal adverse host reactions, flexibility and tunability in terms of chemistry, structure, and polymerization format, ability to incorporate various biomolecules to convey biofunctionality, and opportunity for minimally invasive delivery as injectable carriers. This review highlights recent progress in the engineering of poly(ethylene glycol) hydrogels cross-linked using maleimide reactive groups for protein and cell delivery.


Biomaterial Integrin RGD Cell adhesion Tissue repair 


  1. 1.
    Alejandro, R., F. B. Barton, B. J. Hering, and S. Wease. 2008 Update from the collaborative islet transplant registry. Transplantation 86:1783–1788, 2008.PubMedCrossRefGoogle Scholar
  2. 2.
    Almeda, F. Q., R. J. Snell, and J. E. Parrillo. The contemporary management of acute myocardial infarction. Crit. Care Clin. 17:411–434, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Anversa, P., J. Kajstura, M. Rota, and A. Leri. Regenerating new heart with stem cells. J. Clin. Invest. 123:62–70, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Barshes, N. R., S. Wyllie, and J. A. Goss. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J. Leukoc. Biol. 77:587–597, 2005.PubMedCrossRefGoogle Scholar
  5. 5.
    Barton, F. B., M. R. Rickels, R. Alejandro, B. J. Hering, S. Wease, B. Naziruddin, J. Oberholzer, J. S. Odorico, M. R. Garfinkel, M. Levy, F. Pattou, T. Berney, A. Secchi, S. Messinger, P. A. Senior, P. Maffi, A. Posselt, P. G. Stock, D. B. Kaufman, X. Luo, F. Kandeel, E. Cagliero, N. A. Turgeon, P. Witkowski, A. Naji, P. J. O’Connell, C. Greenbaum, Y. C. Kudva, K. L. Brayman, M. J. Aull, C. Larsen, T. W. Kay, L. A. Fernandez, M. C. Vantyghem, M. Bellin, and A. M. Shapiro. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care 35:1436–1445, 2012.PubMedCrossRefGoogle Scholar
  6. 6.
    Brady, A. C., M. M. Martino, E. Pedraza, S. Sukert, A. Pileggi, R. Camillo, J. Hubbell, and C. Stabler. l. Tissue Eng Part A: Pro-angiogenic hydrogels within macroporous scaffolds enhances islet engraftment in an extrahepatic site, 2013.Google Scholar
  7. 7.
    Carmeliet, P., and R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng, K., D. Fraga, C. Zhang, M. Kotb, A. O. Gaber, R. V. Guntaka, and R. I. Mahato. Adenovirus-based vascular endothelial growth factor gene delivery to human pancreatic islets. Gene Ther. 11:1105–1116, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng, K., T. S. Li, K. Malliaras, D. R. Davis, Y. Zhang, and E. Marban. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ. Res. 106:1570–1581, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Cheng, Y., Y. F. Liu, J. L. Zhang, T. M. Li, and N. Zhao. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats. World J. Gastroenterol. 13:2862–2866, 2007.PubMedGoogle Scholar
  11. 11.
    Chiu, L. L., L. A. Reis, A. Momen, and M. Radisic. Controlled release of thymosin beta4 from injected collagen-chitosan hydrogels promotes angiogenesis and prevents tissue loss after myocardial infarction. Regen. Med. 7:523–533, 2012.PubMedCrossRefGoogle Scholar
  12. 12.
    Chung, I. M., N. O. Enemchukwu, S. D. Khaja, N. Murthy, A. Mantalaris, and A. J. Garcia. Bioadhesive hydrogel microenvironments to modulate epithelial morphogenesis. Biomaterials 29:2637–2645, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Cittadini, A., M. G. Monti, V. Petrillo, G. Esposito, G. Imparato, A. Luciani, F. Urciuolo, E. Bobbio, C. F. Natale, L. Sacca, and P. A. Netti. Complementary therapeutic effects of dual delivery of insulin-like growth factor-1 and vascular endothelial growth factor by gelatin microspheres in experimental heart failure. Eur. J. Heart Fail. 13:1264–1274, 2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Davis, M. E., P. C. Hsieh, T. Takahashi, Q. Song, S. Zhang, R. D. Kamm, A. J. Grodzinsky, P. Anversa, and R. T. Lee. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 103:8155–8160, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Elbert, D. L., and J. A. Hubbell. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2:430–441, 2001.PubMedCrossRefGoogle Scholar
  16. 16.
    Emamaullee, J. A., and A. M. Shapiro. Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant. 16:1–8, 2007.PubMedGoogle Scholar
  17. 17.
    Engel, F. B., P. C. Hsieh, R. T. Lee, and M. T. Keating. FGF1/p38 map kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 103:15546–15551, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ferrara, N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29:789–791, 2009.PubMedCrossRefGoogle Scholar
  19. 19.
    Fiorina, P., A. M. Shapiro, C. Ricordi, and A. Secchi. The clinical impact of islet transplantation. Am. J. Transplant. 8:1990–1997, 2008.PubMedCrossRefGoogle Scholar
  20. 20.
    Fu, Y., and W. J. Kao. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. J. Biomed. Mater. Res. A 98:201–211, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Garbern, J. C., E. Minami, P. S. Stayton, and C. E. Murry. Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32:2407–2416, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hahn, M. S., J. S. Miller, and J. L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18:2679–2684, 2006.CrossRefGoogle Scholar
  23. 23.
    Hiemstra, C., L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen. Novel in situ forming, degradable dextran hydrogels by michael addition chemistry: synthesis, rheology, and degradation. Macromolecules 40:1165–1173, 2007.CrossRefGoogle Scholar
  24. 24.
    Hiemstra, C., L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Biomacromolecules 8:1548–1556, 2007.PubMedCrossRefGoogle Scholar
  25. 25.
    Hiscox, A. M., A. L. Stone, S. Limesand, J. B. Hoying, and S. K. Williams. An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng. Part A 14:433–440, 2008.PubMedCrossRefGoogle Scholar
  26. 26.
    Hou, J., L. Wang, J. Jiang, C. Zhou, T. Guo, S. Zheng, and T. Wang. Cardiac stem cells and their roles in myocardial infarction. Stem Cell Rev. 9:326–338, 2013.PubMedCrossRefGoogle Scholar
  27. 27.
    Hou, D., E. A. Youssef, T. J. Brinton, P. Zhang, P. Rogers, E. T. Price, A. C. Yeung, B. H. Johnstone, P. G. Yock, and K. L. March. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112:I150–I156, 2005.PubMedGoogle Scholar
  28. 28.
    Hsieh, P. C., M. E. Davis, J. Gannon, C. MacGillivray, and R. T. Lee. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116:237–248, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hu, B.-H., J. Su, and P. B. Messersmith. Hydrogels cross-linked by native chemical ligation. Biomacromolecules 10:2194–2200, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hubbell, J. A., S. N. Thomas, and M. A. Swartz. Materials engineering for immunomodulation. Nature 462:449–460, 2009.PubMedCrossRefGoogle Scholar
  31. 31.
    Hunt, N. C., R. M. Shelton, D. J. Henderson, and L. M. Grover. Calcium-alginate hydrogel-encapsulated fibroblasts provide sustained release of vascular endothelial growth factor. Tissue Eng. Part A 19:905–914, 2013.PubMedCrossRefGoogle Scholar
  32. 32.
    Ifkovits, J. L., E. Tous, M. Minakawa, M. Morita, J. D. Robb, K. J. Koomalsingh, J. H. Gorman, 3rd, R. C. Gorman, and J. A. Burdick. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc. Natl. Acad. Sci. U.S.A. 107:11507–11512, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Johnson, T. D., and K. L. Christman. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin. Drug Deliv. 10:59–72, 2013.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim, J., B. K. Wacker, and D. L. Elbert. Thin polymer layers formed using multiarm poly(ethylene glycol) vinylsulfone by a covalent layer-by-layer method. Biomacromolecules 8:3682–3686, 2007.PubMedCrossRefGoogle Scholar
  35. 35.
    Kloxin, A. M., M. W. Tibbitt, and K. S. Anseth. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 5:1867–1887, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kopecek, J., and J. Yang. Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. Engl. 51:7396–7417, 2012.PubMedCrossRefGoogle Scholar
  37. 37.
    Lakey, J. R., M. Mirbolooki, and A. M. Shapiro. Current status of clinical islet cell transplantation. Methods Mol. Biol. 333:47–104, 2006.PubMedGoogle Scholar
  38. 38.
    Leader, B., Q. J. Baca, and D. E. Golan. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discovery 7:21–39, 2008.CrossRefGoogle Scholar
  39. 39.
    Leslie-Barbick, J. E., J. E. Saik, D. J. Gould, M. E. Dickinson, and J. L. West. The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials 32:5782–5789, 2011.PubMedCrossRefGoogle Scholar
  40. 40.
    Li, X. Y., T. Wang, X. J. Jiang, T. Lin, D. Q. Wu, X. Z. Zhang, E. Okello, H. X. Xu, and M. J. Yuan. Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 115:194–199, 2010.PubMedCrossRefGoogle Scholar
  41. 41.
    Lin, C. C., and K. S. Anseth. Peg hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26:631–643, 2009.PubMedCrossRefGoogle Scholar
  42. 42.
    Lin, C. C., and A. T. Metters. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58:1379–1408, 2006.PubMedCrossRefGoogle Scholar
  43. 43.
    Linn, T., J. Schmitz, I. Hauck-Schmalenberger, Y. Lai, R. G. Bretzel, H. Brandhorst, and D. Brandhorst. Ischaemia is linked to inflammation and induction of angiogenesis in pancreatic islets. Clin. Exp. Immunol. 144:179–187, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Liu, Z., H. Wang, Y. Wang, Q. Lin, A. Yao, F. Cao, D. Li, J. Zhou, C. Duan, Z. Du, and C. Wang. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 33:3093–3106, 2012.PubMedCrossRefGoogle Scholar
  45. 45.
    Lutolf, M. P., P. M. Gilbert, and H. M. Blau. Designing materials to direct stem-cell fate. Nature 462:433–441, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lutolf, M. P., and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.PubMedCrossRefGoogle Scholar
  47. 47.
    Malliaras, K., M. Kreke, and E. Marban. The stuttering progress of cell therapy for heart disease. Clin. Pharmacol. Ther. 90:532–541, 2011.PubMedCrossRefGoogle Scholar
  48. 48.
    Mark Saltzman, W., and S. P. Baldwin. Materials for protein delivery in tissue engineering. Adv. Drug Deliv. Rev. 33:71–86, 1998.PubMedCrossRefGoogle Scholar
  49. 49.
    Mathieu, E., G. Lamirault, C. Toquet, P. Lhommet, E. Rederstorff, S. Sourice, K. Biteau, P. Hulin, V. Forest, P. Weiss, J. Guicheux, and P. Lemarchand. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS ONE 7:e51991, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Mehta, M., K. Schmidt-Bleek, G. N. Duda, and D. J. Mooney. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 64:1257–1276, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Narang, A. S., K. Cheng, J. Henry, C. Zhang, O. Sabek, D. Fraga, M. Kotb, A. O. Gaber, and R. I. Mahato. Vascular endothelial growth factor gene delivery for revascularization in transplanted human islets. Pharm. Res. 21:15–25, 2004.PubMedCrossRefGoogle Scholar
  52. 52.
    Narang, A. S., and R. I. Mahato. Biological and biomaterial approaches for improved islet transplantation. Pharmacol. Rev. 58:194–243, 2006.PubMedCrossRefGoogle Scholar
  53. 53.
    National Diabetes Fact Sheet. Centers for Disease Control and Prevention, 2005.Google Scholar
  54. 54.
    Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4:160sr4, 2012.PubMedCrossRefGoogle Scholar
  55. 55.
    Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18:1345–1360, 2006.CrossRefGoogle Scholar
  56. 56.
    Peppas, N. A., Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang. Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2:9–29, 2000.PubMedCrossRefGoogle Scholar
  57. 57.
    Phelps, E. A., N. O. Enemchukwu, V. F. Fiore, J. C. Sy, N. Murthy, T. A. Sulchek, T. H. Barker, and A. J. Garcia. Maleimide cross-linked bioactive peg hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24:64–70, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Phelps, E. A., D. M. Headen, W. R. Taylor, P. M. Thule, and A. J. Garcia. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34:4602–4611, 2013.PubMedCrossRefGoogle Scholar
  59. 59.
    Phelps, E. A., N. Landazuri, P. M. Thule, W. R. Taylor, and A. J. García. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. U.S.A. 107:3323–3328, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Phelps, E. A., Templeman K. L. , P. M. Thule, and A. J. Garcia. Engineered VEGF-releasing PEG–MAL hydrogel for pancreatic islet vascularization. Drug Deliv. Transl. Res. 2013. doi:10.1007/s13346-013-0142-2.
  61. 61.
    Prokoph, S., E. Chavakis, K. R. Levental, A. Zieris, U. Freudenberg, S. Dimmeler, and C. Werner. Sustained delivery of SDF-1alpha from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials 33:4792–4800, 2012.PubMedCrossRefGoogle Scholar
  62. 62.
    Quevedo, H. C., K. E. Hatzistergos, B. N. Oskouei, G. S. Feigenbaum, J. E. Rodriguez, D. Valdes, P. M. Pattany, J. P. Zambrano, Q. Hu, I. McNiece, A. W. Heldman, and J. M. Hare. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. U.S.A. 106:14022–14027, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Ren, G., X. Chen, F. Dong, W. Li, X. Ren, Y. Zhang, and Y. Shi. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl. Med. 1:51–58, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Rice, J. J., M. M. Martino, L. De Laporte, F. Tortelli, P. S. Briquez, and J. A. Hubbell. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2:57–71, 2013.PubMedCrossRefGoogle Scholar
  65. 65.
    Rizzi, S. C., M. Ehrbar, S. Halstenberg, G. P. Raeber, H. G. Schmoekel, H. Hagenmuller, R. Muller, F. E. Weber, and J. A. Hubbell. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: Biofunctional characteristics. Biomacromolecules 7:3019–3029, 2006.PubMedCrossRefGoogle Scholar
  66. 66.
    Rizzi, S. C., and J. A. Hubbell. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 6:1226–1238, 2005.PubMedCrossRefGoogle Scholar
  67. 67.
    Robertson, R. P. Islet transplantation as a treatment for diabetes—a work in progress. N. Engl. J. Med. 350:694–705, 2004.PubMedCrossRefGoogle Scholar
  68. 68.
    Roger, V. L., A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, D. M. Bravata, S. Dai, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, E. Z. Soliman, P. D. Sorlie, N. Sotoodehnia, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, and M. B. Turner. Heart disease and stroke statistics—2012 update: a report from the american heart association. Circulation 125:e2–e220, 2012.PubMedCrossRefGoogle Scholar
  69. 69.
    Salimath, A. S., E. A. Phelps, A. V. Boopathy, P. L. Che, M. Brown, A. J. Garcia, and M. E. Davis. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS ONE 7:e50980, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Sawhney, A. S., C. P. Pathak, and J. A. Hubbell. Modification of islet of langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotechnol. Bioeng. 44:383–386, 1994.PubMedCrossRefGoogle Scholar
  71. 71.
    Schmidt, J. J., J. Rowley, and H. J. Kong. Hydrogels used for cell-based drug delivery. J. Biomed. Mater. Res. A 87:1113–1122, 2008.PubMedCrossRefGoogle Scholar
  72. 72.
    Seif-Naraghi, S. B., J. M. Singelyn, M. A. Salvatore, K. G. Osborn, J. J. Wang, U. Sampat, O. L. Kwan, G. M. Strachan, J. Wong, P. J. Schup-Magoffin, R. L. Braden, K. Bartels, J. A. DeQuach, M. Preul, A. M. Kinsey, A. N. DeMaria, N. Dib, and K. L. Christman. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5:173, 2013.CrossRefGoogle Scholar
  73. 73.
    Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128, 2012.PubMedCrossRefGoogle Scholar
  74. 74.
    Seliktar, D., A. H. Zisch, M. P. Lutolf, J. L. Wrana, and J. A. Hubbell. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A 68:704–716, 2004.PubMedCrossRefGoogle Scholar
  75. 75.
    Shapiro, A. M., C. Ricordi, B. J. Hering, H. Auchincloss, R. Lindblad, R. P. Robertson, A. Secchi, M. D. Brendel, T. Berney, D. C. Brennan, E. Cagliero, R. Alejandro, E. A. Ryan, B. DiMercurio, P. Morel, K. S. Polonsky, J. A. Reems, R. G. Bretzel, F. Bertuzzi, T. Froud, R. Kandaswamy, D. E. Sutherland, G. Eisenbarth, M. Segal, J. Preiksaitis, G. S. Korbutt, F. B. Barton, L. Viviano, V. Seyfert-Margolis, J. Bluestone, and J. R. Lakey. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355:1318–1330, 2006.PubMedCrossRefGoogle Scholar
  76. 76.
    Shikanov, A., R. M. Smith, M. Xu, T. K. Woodruff, and L. D. Shea. Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials 32:2524–2531, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Sigrist, S., A. Mechine-Neuville, K. Mandes, V. Calenda, S. Braun, G. Legeay, J. P. Bellocq, M. Pinget, and L. Kessler. Influence of VEGF on the viability of encapsulated pancreatic rat islets after transplantation in diabetic mice. Cell Transplant. 12:627–635, 2003.PubMedGoogle Scholar
  78. 78.
    Singelyn, J. M., P. Sundaramurthy, T. D. Johnson, P. J. Schup-Magoffin, D. P. Hu, D. M. Faulk, J. Wang, K. M. Mayle, K. Bartels, M. Salvatore, A. M. Kinsey, A. N. Demaria, N. Dib, and K. L. Christman. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 59:751–763, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Smith, R. R., E. Marban, and L. Marban. Enhancing retention and efficacy of cardiosphere-derived cells administered after myocardial infarction using a hyaluronan-gelatin hydrogel. Biomatter 3, 2013.Google Scholar
  80. 80.
    Stabenfeldt, S. E., G. Munglani, A. J. Garcia, and M. C. LaPlaca. Biomimetic microenvironment modulates neural stem cell survival, migration, and differentiation. Tissue Eng. Part A 16:3747–3758, 2010.PubMedCrossRefGoogle Scholar
  81. 81.
    Stabler, C. L., X. L. Sun, W. Cui, J. T. Wilson, C. A. Haller, and E. L. Chaikof. Surface re-engineering of pancreatic islets with recombinant azido-thrombomodulin. Bioconjug. Chem. 18:1713–1715, 2007.PubMedCrossRefGoogle Scholar
  82. 82.
    Stendahl, J. C., D. B. Kaufman, and S. I. Stupp. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant. 18:1–12, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Stendahl, J. C., L. J. Wang, L. W. Chow, D. B. Kaufman, and S. I. Stupp. Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. Transplantation 86:478–481, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Su, J., B.-H. Hu, W. L. Lowe, Jr., D. B. Kaufman, and P. B. Messersmith. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31:308–314, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Terrovitis, J., R. Lautamaki, M. Bonios, J. Fox, J. M. Engles, J. Yu, M. K. Leppo, M. G. Pomper, R. L. Wahl, J. Seidel, B. M. Tsui, F. M. Bengel, M. R. Abraham, and E. Marban. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J. Am. Coll. Cardiol. 54:1619–1626, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Tous, E., J. L. Ifkovits, K. J. Koomalsingh, T. Shuto, T. Soeda, N. Kondo, J. H. Gorman, 3rd, R. C. Gorman, and J. A. Burdick. Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 12:4127–4135, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Tsur-Gang, O., E. Ruvinov, N. Landa, R. Holbova, M. S. Feinberg, J. Leor, and S. Cohen. The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30:189–195, 2009.PubMedCrossRefGoogle Scholar
  88. 88.
    Vaithilingam, V., G. Sundaram, and B. E. Tuch. Islet cell transplantation. Curr. Opin. Organ Transplant. 13:633–638, 2008.PubMedCrossRefGoogle Scholar
  89. 89.
    Wall, S. T., C. C. Yeh, R. Y. Tu, M. J. Mann, and K. E. Healy. Biomimetic matrices for myocardial stabilization and stem cell transplantation. J. Biomed. Mater. Res. A 95:1055–1066, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Weber, L. M., and K. S. Anseth. Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol. 27:667–673, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Weber, L. M., C. Y. Cheung, and K. S. Anseth. Multifunctional pancreatic islet encapsulation barriers achieved via multilayer peg hydrogels. Cell Transplant. 16:1049–1057, 2008.PubMedCrossRefGoogle Scholar
  92. 92.
    Wilson, J. T., W. Cui, and E. L. Chaikof. Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano Lett. 8:1940–1948, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Yu, H., Z.-G. Feng, A.-Y. Zhang, L.-G. Sun, and L. Qian. Synthesis and characterization of three-dimensional crosslinked networks based on self-assembly of α-cyclodextrins with thiolated 4-arm PEG using a three-step oxidation. Soft Matter 2:343, 2006.CrossRefGoogle Scholar
  94. 94.
    Yu, J., Y. Gu, K. T. Du, S. Mihardja, R. E. Sievers, and R. J. Lee. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30:751–756, 2009.PubMedCrossRefGoogle Scholar
  95. 95.
    Yun, L. D., N. J. Hee, and Y. Byun. Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year. Biomaterials 28:1957–1966, 2007.CrossRefGoogle Scholar
  96. 96.
    Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Zisch, A. H., M. P. Lutolf, M. Ehrbar, G. P. Raeber, S. C. Rizzi, N. Davies, H. Schmokel, D. Bezuidenhout, V. Djonov, P. Zilla, and J. A. Hubbell. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17:2260–2262, 2003.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations