Age-Dependent Ascending Aorta Mechanics Assessed Through Multiphase CT

  • 656 Accesses

  • 23 Citations


Quantification of the age- and gender-specific in vivo mechanical characteristics of the ascending aorta (AA) will allow for identification of abnormalities aside from changes brought on by aging alone. Multiphase clinical CT scans of 45 male patients between the ages of 30 and 79 years were analyzed to assess age-dependent in vivo AA characteristics. The three-dimensional AA geometry for each patient was reconstructed from the CT scans for 9–10 phases throughout the cardiac cycle. The AA circumference was measured during each phase and was used to determine the corresponding diameter, circumferential strain, and wall tension at each phase. The pressure-strain modulus was also determined for each patient. The mean diastolic AA diameter was significantly smaller among young (42.6 ± 5.2 years) at 29.9 ± 2.8 mm than old patients (69.0 ± 5.2 years) at 33.2 ± 3.2 mm. The circumferential AA strain from end-diastole to peak-systole decreased from 0.092 ± 0.03 in young to 0.056 ± 0.03 in old patients. The pressure–strain modulus increased two-fold from 68.4 ± 30.5 kPa in young to 162.0 ± 93.5 kPa in old patients, and the systolic AA wall tension increased from 268.5 ± 31.3 kPa in young to 304.9 ± 49.2 kPa in old patients. The AA dilates and stiffens with aging which increases the vessel wall tension, likely predisposing aneurysm and dissection.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    Ahlgren, A. R., F. Hansen, B. Sonesson, and T. Länne. Stiffness and diameter of the common carotid artery and abdominal aorta in women. Ultrasound Med. Biol. 23(7):983–988, 1997.

  2. 2.

    Aronberg, D. J., H. S. Glazer, K. Madsen, and S. S. Sagel. Normal thoracic aortic diameters by computed tomography. J. Comput. Assist. Tomogr. 8(2):247–250, 1984.

  3. 3.

    Ãstrand, H., J. StÃlhand, J. Karlsson, M. Karlsson, B. Sonesson, and T. LÃnne. In vivo estimation of the contribution of elastin and collagen to the mechanical properties in the human abdominal aorta: effect of age and sex. J. Appl. Physiol. 110(1):176–187, 2011.

  4. 4.

    Biaggi, P., F. Matthews, J. Braun, V. Rousson, P. A. Kaufmann, and R. Jenni. Gender, age, and body surface area are the major determinants of ascending aorta dimensions in subjects with apparently normal echocardiograms. J. Am. Soc. Echocardiogr. 22(6):720–725, 2009.

  5. 5.

    Chue, C. D., N. C. Edwards, C. J. Ferro, J. N. Townend, and R. P. Steeds. Effects of age and chronic kidney disease on regional aortic distensibility: a cardiovascular magnetic resonance study. Int. J. Cardiol., 2013.

  6. 6.

    Coady, M. A., J. A. Rizzo, G. L. Hammond, D. Mandapati, U. Darr, G. S. Kopf, and J. A. Elefteriades. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J. Thorac. Cardiovasc. Surg. 113(3):476–491, 1997.

  7. 7.

    Craiem, D., G. Chironi, M. E. Casciaro, A. Redheuil, E. Mousseaux, and A. Simon. Three-dimensional evaluation of thoracic aorta enlargement and unfolding in hypertensive men using non-contrast computed tomography. J. Hum. Hypertens. 2013. doi:10.1038/jhh.2012.69.

  8. 8.

    Craiem, D., G. Chironi, A. Redheuil, M. Casciaro, E. Mousseaux, A. Simon, and R. Armentano. Aging impact on thoracic aorta 3D morphometry in intermediate-risk subjects: looking beyond coronary arteries with non-contrast cardiac CT. Ann. Biomed. Eng. 40(5):1028–1038, 2011.

  9. 9.

    Davies, R. R., A. Gallo, M. A. Coady, G. Tellides, D. M. Botta, B. Burke, M. P. Coe, G. S. Kopf, and J. A. Elefteriades. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann. Thorac. Surg. 81(1):169–177, 2006.

  10. 10.

    Davies, R., L. Goldstein, M. Coady, S. Tittle, J. Rizzo, G. Kopf, and J. Elefteriades. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac. Surg. 73(1):17–27, 2002.

  11. 11.

    Duprey, A., K. Khanafer, M. Schlicht, S. Avril, D. Williams, and R. Berguer. In vitro characterisation of physiological and maximum elastic modulus of ascending thoracic aortic aneurysms using uniaxial tensile testing. Eur. J. Vasc. Endovasc. Surg. 39(6):700–707, 2010.

  12. 12.

    Elefteriades, J. A., and E. A. Farkas. Thoracic aortic aneurysm: clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol. 55(9):841–857, 2010.

  13. 13.

    Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37(4):724–732, 2003.

  14. 14.

    Ganten, M., U. Krautter, W. Hosch, J. Hansmann, H. von Tengg-Kobligk, S. Delorme, H.-U. Kauczor, G. Kauffmann, and M. Bock. Age related changes of human aortic distensibility: evaluation with ECG-gated CT. Eur. Radiol. 17(3):701–708, 2007.

  15. 15.

    García-Herrera, C. M., J. M. Atienza, F. J. Rojo, E. Claes, G. V. Guinea, D. J. Celentano, C. García-Montero, and R. L. Burgos. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med. Biol. Eng. Comput. 1–8, 2012.

  16. 16.

    Garcier, J. M., V. Petitcolin, M. Filaire, R. Mofid, K. Azarnouch, A. Ravel, G. Vanneuville, and L. Boyer. Normal diameter of the thoracic aorta in adults: a magnetic resonance imaging study. Surg. Radiol. Anat. 25(3):322–329, 2003.

  17. 17.

    Gillessen, T., F. Gillessen, H. Sieberth, P. Hanrath, and B. Heintz. Age-related changes in the elastic properties of the aortic tree in normotensive patients: investigation by intravascular ultrasound. Eur J Med Res 1(3):144–148, 1995.

  18. 18.

    Hager, A., H. Kaemmerer, U. Rapp-Bernhardt, S. Blücher, K. Rapp, T. M. Bernhardt, M. Galanski, and J. Hess. Diameters of the thoracic aorta throughout life as measured with helical computed tomography. J. Thorac. Cardiovasc. Surg. 123(6):1060–1066, 2002.

  19. 19.

    Haskett, D., G. Johnson, A. Zhou, U. Utzinger, and J. Vande Geest. Microstructural and biomechanical alterations of the human aorta as a function of age and location,”. Biomech. Model. Mechanobiol. 9(6):725–736, 2010.

  20. 20.

    Hickson, S. S., M. Butlin, M. Graves, V. Taviani, A. P. Avolio, C. M. McEniery, and I. B. Wilkinson. The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc. Imaging 3(12):1247–1255, 2010.

  21. 21.

    Hunter, K. S., J. A. Albietz, P.-F. Lee, C. J. Lanning, S. R. Lammers, S. H. Hofmeister, P. H. Kao, H. J. Qi, K. R. Stenmark, and R. Shandas. In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. J. Appl. Physiol. 108(4):968–975, 2010.

  22. 22.

    Karamanoglu, M., M. F. O’Rourke, A. P. Avolio, and R. P. Kelly. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur. Heart J. 14(2):160–167, 1993.

  23. 23.

    Khanafer, K., A. Duprey, M. Zainal, M. Schlicht, D. Williams, and R. Berguer. Determination of the elastic modulus of ascending thoracic aortic aneurysm at different ranges of pressure using uniaxial tensile testing. J. Thorac. Cardiovasc. Surg. 142(3):682–686, 2011.

  24. 24.

    Klocke, R., J. R. Cockcroft, G. J. Taylor, I. R. Hall, and D. R. Blake. Arterial stiffness and central blood pressure, as determined by pulse wave analysis, in rheumatoid arthritis. Ann. Rheum. Dis. 62(5):414–418, 2003.

  25. 25.

    Koullias, G., R. Modak, M. Tranquilli, D. P. Korkolis, P. Barash, and J. A. Elefteriades. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J. Thorac. Cardiovasc. Surg. 130(3):677–683, 2005.

  26. 26.

    Lanne, T., B. Sonesson, D. Bergqvist, H. Bengtsson, and D. Gustafsson. Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. Eur. J. Vasc. Surg. 6(2):178–184, 1992.

  27. 27.

    Li, Z.-Y., U. Sadat, J. U-King-Im, T. Y. Tang, D. J. Bowden, P. D. Hayes, and J. H. Gillard. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion/clinical perspective. Circulation 122(18):1815–1822, 2010.

  28. 28.

    Mao, S. S., N. Ahmadi, B. Shah, D. Beckmann, A. Chen, L. Ngo, F. R. Flores, Y. L. Gao, and M. J. Budoff. Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad. Radiol. 15(7):827–834, 2008.

  29. 29.

    Martin, C., T. Pham, and W. Sun. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardiothorac. Surg. 40(1):28–34, 2010.

  30. 30.

    Metafratzi, Z., S. Efremidis, A. Skopelitou, and A. De Roos. The clinical significance of aortic compliance and its assessment with magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 4(4):481–491, 2002.

  31. 31.

    Mirea, O., F. Maffessanti, P. Gripari, G. Tamborini, M. Muratori, L. Fusini, C. Claudia, C. Fiorentini, I. E. Plesea, and M. Pepi. Effects of aging and body size on proximal and ascending aorta and aortic arch: inner edge-to-inner edge reference values in a large adult population by two-dimensional transthoracic echocardiography. J. Am. Soc. Echocardiogr. 26(4):419–427, 2013.

  32. 32.

    Morrison, T. M., G. Choi, C. K. Zarins, and C. A. Taylor. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J. Vasc. Surg. 49(4):1029–1036, 2009.

  33. 33.

    Nelson, A. J., S. G. Worthley, J. D. Cameron, S. R. Willoughby, C. Piantadosi, A. Carbone, B. K. Dundon, M. C. Leung, S. A. Hope, I. T. Meredith, and M. I. Worthley. Cardiovascular magnetic resonance-derived aortic distensibility: validation and observed regional differences in the elderly. J. Hypertens. 27(3):535–542, 2009.

  34. 34.

    O’Rourke, M. F. Arterial aging: pathophysiological principles. Vascular Med. 12(4):329–341, 2007.

  35. 35.

    O’Rourke, M. F., and J. Hashimoto. Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50(1):1–13, 2007.

  36. 36.

    O’Rourke, M. F., M. E. Safar, and V. Dzau. The cardiovascular continuum extended: aging effects on the aorta and microvasculature. Vascular Med. 15(6):461–468, 2010.

  37. 37.

    Peterson, L. H., R. E. Jensen, and J. Parnell. Mechanical properties of arteries in vivo. Circ. Res. 8(3):622–639, 1960.

  38. 38.

    Redheuil, A., W. C. Yu, C. O. Wu, E. Mousseaux, A. De Cesare, R. Yan, N. Kachenoura, D. Bluemke, and J. A. C. Lima. Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension 55(2):319–326, 2010.

  39. 39.

    Roman, M. J., R. B. Devereux, R. Kramer-Fox, and J. O’Loughlin. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am. J. Cardiol. 64(8):507–512, 1989.

  40. 40.

    Rose, J. L., A. Lalande, O. Bouchot, E. B. Bourennane, P. M. Walker, P. Ugolini, C. Revol-Muller, R. Cartier, and F. Brunotte. Influence of age and sex on aortic distensibility assessed by MRI in healthy subjects. Magn. Reson. Imaging 28(2):255–263, 2010.

  41. 41.

    Siegel, E., W. E. Thai, T. Techasith, G. Major, J. Szymonifka, A. Tawakol, J. T. Nagurney, U. Hoffmann, and Q. A. Truong. Aortic distensibility and its relationship to coronary and thoracic atherosclerosis plaque and morphology by MDCT: insights from the ROMICAT trial. Int. J. Cardiol., 2013.

  42. 42.

    Sokolis, D. P., E. P. Kritharis, A. T. Giagini, K. M. Lampropoulos, S. A. Papadodima, and D. C. Iliopoulos. Biomechanical response of ascending thoracic aortic aneurysms: association with structural remodelling. Comput. Methods Biomech. Biomed. Eng. 15(3):231–248, 2012.

  43. 43.

    Sugawara, J., K. Hayashi, T. Yokoi, and H. Tanaka. Age-associated elongation of the ascending aorta in adults. JACC Cardiovasc. Imaging 1(6):739–748, 2008.

  44. 44.

    Taviani, V., S. S. Hickson, C. J. Hardy, C. M. McEniery, A. J. Patterson, J. H. Gillard, I. B. Wilkinson, and M. J. Graves. Age-related changes of regional pulse wave velocity in the descending aorta using Fourier velocity encoded M-mode. Magn. Reson. Med. 65(1):261–268, 2010.

  45. 45.

    Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28(2):168–176, 2004.

  46. 46.

    Vlachopoulos, C., K. Aznaouridis, and C. Stefanadis. Clinical appraisal of arterial stiffness: the Argonauts in front of the Golden Fleece. Heart 92(11):1544–1550, 2006.

  47. 47.

    Vorp, D. A., B. J. Schiro, M. P. Ehrlich, T. S. Juvonen, M. A. Ergin, and B. P. Griffith. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75(4):1210–1214, 2003.

  48. 48.

    Waddell, T. K., A. M. Dart, C. D. Gatzka, J. D. Cameron, and B. A. Kingwell. Women exhibit a greater age-related increase in proximal aortic stiffness than men. J. Hypertens. 19(12):2205–2212, 2001.

  49. 49.

    Wang, Q., G. Book, S. Contreras Ortiz, C. Primiano, R. McKay, S. Kodali, and W. Sun. Dimensional analysis of aortic root geometry during diastole using 3D models reconstructed from clinical 64-slice computed tomography images. Cardiovasc. Eng. Technol. 2(4):324–333, 2011.

  50. 50.

    Wedding, K. L., M. T. Draney, R. J. Herfkens, C. K. Zarins, C. A. Taylor, and N. J. Pelc. Measurement of vessel wall strain using cine phase contrast MRI. J. Magn. Reson. Imaging 15(4):418–428, 2002.

  51. 51.

    Wilson, K. A., P. R. Hoskins, A. J. Lee, F. G. R. Fowkes, C. V. Ruckley, and A. W. Bradbury. Ultrasonic measurement of abdominal aortic aneurysm wall compliance: a reproducibility study. J. Vasc. Surg. 31(3):507–513, 2000.

  52. 52.

    Wolak, A., H. Gransar, L. E. J. Thomson, J. D. Friedman, R. Hachamovitch, A. Gutstein, L. J. Shaw, D. Polk, N. D. Wong, R. Saouaf, S. W. Hayes, A. Rozanski, P. J. Slomka, G. Germano, and D. S. Berman. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC Cardiovasc. Imaging 1(2):200–209, 2008.

  53. 53.

    Wuyts, F. L., V. J. Vanhuyse, G. J. Langewouters, W. F. Decraemer, E. R. Raman, and S. Buyle. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40(10):1577–1597, 1995.

Download references


This work was supported in part by the NIH HL108239 and HL104080 grants. Caitlin Martin is supported by NIH NRSA pre-doctoral fellowship HL112632. The authors would also like to thank Qian Wang and Alexander Werne for collecting and processing the CT image data.

Conflict of interest

The authors have no conflicts of interest.

Author information

Correspondence to Wei Sun.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, C., Sun, W., Primiano, C. et al. Age-Dependent Ascending Aorta Mechanics Assessed Through Multiphase CT. Ann Biomed Eng 41, 2565–2574 (2013) doi:10.1007/s10439-013-0856-9

Download citation


  • Ascending aorta
  • Aging
  • Mechanics
  • Imaging
  • Elasticity