Annals of Biomedical Engineering

, Volume 41, Issue 12, pp 2603–2616 | Cite as

Topology of Blood Transport in the Human Left Ventricle by Novel Processing of Doppler Echocardiography

  • Sahar Hendabadi
  • Javier Bermejo
  • Yolanda Benito
  • Raquel Yotti
  • Francisco Fernández-Avilés
  • Juan C. del Álamo
  • Shawn C. ShaddenEmail author


Novel processing of Doppler-echocardiography data was used to study blood transport in the left ventricle (LV) of six patients with dilated cardiomyopathy and six healthy volunteers. Bi-directional velocity field maps in the apical long axis of the LV were reconstructed from color-Doppler echocardiography. Resulting velocity field data were used to perform trajectory-based computation of Lagrangian coherent structures (LCS). LCS were shown to reveal the boundaries of blood injected and ejected from the heart over multiple beats. This enabled qualitative and quantitative assessments of blood transport patterns and residence times in the LV. Quantitative assessments of stasis in the LV are reported, as well as characterization of LV vortex formations from E-wave and A-wave filling.


Cardiomyopathy Intracardiac blood flow Lagrangian coherent structures Velocimetry 



This work was supported by the NIH National Heart, Lung and Blood Institute, award 5R21HL108268, and by grants (PIS09/02603 and RD06/0010) from the Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Instituto de Salud Carlos III–Ministerio de Economía y Competitividad, Spain.

Conflict of interest

The authors do not have any conflicts of interest in regards to this study.


  1. 1.
    Adams, P. C., M. Cohen, J. H. Chesebro, and V. Fuster. Thrombosis and embolism from cardiac chambers and infected valves. J. Am. Coll. Cardiol. 8(6):76–87, 1986.PubMedCrossRefGoogle Scholar
  2. 2.
    Alhama, M., J. Bermejo, R. Yotti, E. Péerez-David, Y. Benito, A. González-Mansilla, C. Pérez-del Villar, F. Fernández-Avilés, and J. C. del Álamo. Quantitative assessment of intraventricular vorticity using conventional color-Doppler ultrasound. Head to head clinical validation against phase-contrast magnetic resonance imaging. J. Am. Coll. Cardiol. 3(59):E1128–E1128 (abstract), 2012.Google Scholar
  3. 3.
    Arzani, A., and S. C. Shadden. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models. Phys. Fluids 24(8):081901, 2012.CrossRefGoogle Scholar
  4. 4.
    Bolger, A. F., E. Heiberg, M. Karlsson, L. Wigström, J. Engvall, A. Sigfridsson, T. Ebbers, J. P. E. Kvitting, C. J. Carlhäll, and B. Wranne. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9(5):741–747, 2007.PubMedCrossRefGoogle Scholar
  5. 5.
    Charonko, J. J., R. Kumar, K. Stewart, W. C. Little, and P. P. Vlachos. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41(5):1049–1061, 2013.PubMedCrossRefGoogle Scholar
  6. 6.
    Chong, M. S., A. E. Perry, and B. J. Cantwell. A general classification of three-dimensional flow fields. Phys. Fluids A 2(5):765–777, 1990.CrossRefGoogle Scholar
  7. 7.
    Duvernois, V., A. L. Marsden, and S. C. Shadden. Lagrangian analysis of hemodynamics data from FSI simulation. Int. J. Numer. Methods Biomed. Eng. 29(4):445–461, 2013.CrossRefGoogle Scholar
  8. 8.
    Eriksson, J., C. J. Carlhäll, P. Dyverfeldt, J. Engvall, A. F. Bolger, and T. Ebbers. Semi-automatic quantification of 4d left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12(9):1–10, 2010.Google Scholar
  9. 9.
    Faludi, R., M. Szulik, J. D’hooge, P. Herijgers, F. Rademakers, G. Pedrizzetti, and J. Voigt. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139(6):1501–1510, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Fatouraee, N., and A. A. Amini. Regularization of flow streamlines in multislice phase-contrast MR imaging. IEEE Trans. Med. Imaging 22(6):699–709, 2003.PubMedCrossRefGoogle Scholar
  11. 11.
    Gaasch, W. H., and M. R. Zile. Left ventricular diastolic dysfunction and diastolic heart failure. Annu. Rev. Med. 55:373–394, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Garcia, D., J. C. del Álamo, D. Tanné, R. Yotti, C. Cortina, E. Bertrand, J. C. Antoranz, E. Pérez-David, R. Rieu, F. Fernández-Avilés, and J. Bermejo. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans. Med. Imaging. 29(10):1701–1713, 2010.PubMedCrossRefGoogle Scholar
  13. 13.
    Hendabadi, S., J. C. del Álamo, and S. C. Shadden. Healthy versus diseased transport and mixing in the human left ventricle. In: Proceedings of the ASME 2012 Summer Bioengineering Conference, June 20–23, Farjardo, PR, USA, 2012Google Scholar
  14. 14.
    Hong, G. R., G. Pedrizzetti, G. Tonti, P. Li, Z. Wei, J.K. Kim, A. Baweja, S. Liu, N. Chung, H. Houle, J. Narula, and M. A. Vannan. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J. Am. Coll. Cardiol. 1(6):705–717, 2008.CrossRefGoogle Scholar
  15. 15.
    Irisawa, H., M. F. Wilson, and R. F. Rushmer. Left ventricle as a mixing chamber. Circ. Res. 8(1):183–187, 1960.PubMedCrossRefGoogle Scholar
  16. 16.
    Kasai, C., K. Namekawa, A. Koyano, and R. Omoto. Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans. Sonics Ultrason. 32(3):458–464, 1985.CrossRefGoogle Scholar
  17. 17.
    Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, J.R. Lindner, M. Gharib, and D. Sahn. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23(1):86–94, 2010.PubMedCrossRefGoogle Scholar
  18. 18.
    Luo, J., and E. E. Konofagou. Imaging of wall motion coupled with blood flow velocity in the heart and vessels in vivo: a feasibility study. Ultrasound Med. Biol. 37:980–95, 2011.PubMedCrossRefGoogle Scholar
  19. 19.
    Nishimura, R. A., and A. J. Tajik. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta stone. J. Am. Coll. Cardiol. 30(1):8–18, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Ohno, M., C. P. Cheng, and W. C. Little. Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation. 89(5):2241–2250, 1994.PubMedCrossRefGoogle Scholar
  21. 21.
    Peikert, R., B. Schindler, and R. Carnecky. Ridge surface methods for the visualization of Lagrangian coherent structures. In: Proceedings of the Ninth International Conference on Flow Dynamics, Sendai, Japan, 2012, pp. 206–207.Google Scholar
  22. 22.
    Persson, P.O., and G. Strang. A simple mesh generator in matlab. SIAM Rev. 46(2):329–345, 2004.CrossRefGoogle Scholar
  23. 23.
    Pinamonti, B., A. Di Lenarda, G. Sinagra, and F. Camerini. Restrictive left ventricular filling pattern in dilated cardiomyopathy assessed by Doppler echocardiography: clinical, echocardiographic and hemodynamic correlations and prognostic implications. J. Am. Coll. Cardiol. 22(3):808–815, 1993.PubMedCrossRefGoogle Scholar
  24. 24.
    Quaini, A., S. Canic, and D. Paniagua. Numerical characterization of hemodynamics conditions near the aortic valve after implantation of left ventricle assist device. Math. Biosci. Eng. 3(8):785–806, 2011.CrossRefGoogle Scholar
  25. 25.
    Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3):503–515, 2009.PubMedCrossRefGoogle Scholar
  26. 26.
    Shadden, S. C. Lagrangian coherent structures in blood flow. In: 61st Annual Meeting of the APS Division of Fluid Dynamics, number 15, 2008.Google Scholar
  27. 27.
    Shadden, S. C. Lagrangian coherent structures. In: Transport and Mixing in Laminar Flows. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011, pp. 59–89.Google Scholar
  28. 28.
    Shadden, S. C., M. Astorino, and J. F. Gerbeau. Computational analysis of an aortic valve jet with Lagrangian coherent structures. CHAOS 20:017512-1–017512-110, 2010.Google Scholar
  29. 29.
    Shadden, S. C., J. O. Dabiri, and J. E. Marsden. Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18(4):047105, 2006.Google Scholar
  30. 30.
    Shadden, S. C., and S. Hendabadi. Potential fluid mechanic pathways of platelet activation. Biomech. Model. Mechanobiol. 12(3):467–474, 2013.PubMedCrossRefGoogle Scholar
  31. 31.
    Shadden, S. C., K. Katija, M. Rosenfeld, J. E. Marsden, and J. O. Dabiri. Transport and stirring induced by vortex formation. J. Fluid Mech. 593:315–332, 2007.CrossRefGoogle Scholar
  32. 32.
    Shadden, S. C., F. Lekien, J. E. Marsden. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212(3–4):271–304, 2005.CrossRefGoogle Scholar
  33. 33.
    Shadden, S. C., and C. A. Taylor. Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36(7):1152–1162, 2008.PubMedCrossRefGoogle Scholar
  34. 34.
    St John Sutton, M., J. E. Otterstat, T. Plappert, A. Parker, D. Sekarski, M. G. Keane, P. Poole-Wilson, and K. Lubsen. Quantitation of left ventricular volumes and ejection fraction in post-infarction patients from biplane and single plane two-dimensional echocardiograms a prospective longitudinal study of 371 patients. Eur. Heart J. 19(5):808–816, 1998.PubMedCrossRefGoogle Scholar
  35. 35.
    Takatsuji, H., T. Mikami, K. Urasawa, J. I. Teranishi, H. Onozuka, C. Takagi, Y. Makita, H. Matsuo, H. Kusuoka, A. Kitabatake. A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of left ventricular filling flow propagation by color M-mode Doppler echocardiography. J. Am. Coll. Cardiol. 27(2):365–371, 1996.PubMedCrossRefGoogle Scholar
  36. 36.
    Thomas, J. D., and Z. B. Popovic. Assessment of left ventricular function by cardiac ultrasound. J. Am. Coll. Cardiol. 48(10):2012–2015, 2006.PubMedCrossRefGoogle Scholar
  37. 37.
    Thomas, J. D., and A. E. Weyman. Echocardiographic Doppler evaluation of left ventricular diastolic function: physics and physiology. Circulation 84(3):977–990, 1991.PubMedCrossRefGoogle Scholar
  38. 38.
    Toger, J., M. Kanski, M. Carlsson, A. Kovacs, G. Soderlind, H. Arheden, and E. Heiberg. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann. Biomed. Eng. 40(12):2652–2662, 2012.PubMedCrossRefGoogle Scholar
  39. 39.
    Uejima T., A. Koike, H. Sawada, T. Aizawa, S. Ohtsuki, M. Tanaka, T. Furukawa, and A. G. Fraser. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med. Biol. 36(5):772–788, 2010.PubMedCrossRefGoogle Scholar
  40. 40.
    Vétel, J., A. Garon, and D. Pelletier. Lagrangian coherent structures in the human carotid artery bifurcation. Exp. Fluids 46:1067–1079, 2009.CrossRefGoogle Scholar
  41. 41.
    Xu, Z., N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, and M. Alber. Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5:769–779, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Sahar Hendabadi
    • 1
  • Javier Bermejo
    • 2
    • 3
  • Yolanda Benito
    • 2
    • 3
  • Raquel Yotti
    • 2
    • 3
  • Francisco Fernández-Avilés
    • 2
    • 3
  • Juan C. del Álamo
    • 4
  • Shawn C. Shadden
    • 1
    • 5
    Email author
  1. 1.Department of Mechanical, Materials and Aerospace EngineeringIllinois Institute of TechnologyChicagoUSA
  2. 2.Department of CardiologyHospital General Universitario Gregorio MarañónMadridSpain
  3. 3.Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
  4. 4.Department of Mechanical and Aerospace Engineering, Institute for Engineering in MedicineUniversity of California San DiegoLa JollaUSA
  5. 5.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations