Annals of Biomedical Engineering

, Volume 41, Issue 8, pp 1787–1799 | Cite as

Consistency Among Musculoskeletal Models: Caveat Utilitor

  • David W. Wagner
  • Vahagn Stepanyan
  • James M. Shippen
  • Matthew S. DeMers
  • Robin S. Gibbons
  • Brian J. Andrews
  • Graham H. Creasey
  • Gary S. Beaupre


Musculoskeletal simulation software and model repositories have broadened the user base able to perform musculoskeletal analysis and have facilitated in the sharing of models. As the recognition of musculoskeletal modeling continues to grow as an engineering discipline, the consistency in results derived from different models and software is becoming more critical. The purpose of this study was to compare eight models from three software packages and evaluate differences in quadriceps moment arms, predicted muscle forces, and predicted tibiofemoral contact forces for an idealized knee-extension task spanning −125 to +10° of knee extension. Substantial variation among models was observed for the majority of aspects evaluated. Differences among models were influenced by knee angle, with better agreement of moment arms and tibiofemoral joint contact force occurring at low to moderate knee flexion angles. The results suggest a lack of consistency among models and that output differences are not simply an artifact of naturally occurring inter-individual differences. Although generic musculoskeletal models can easily be scaled to consistent limb lengths and use the same muscle recruitment algorithm, the results suggest those are not sufficient conditions to produce consistent muscle or joint contact forces, even for simplified models with no potential of co-contraction.


Musculoskeletal models Muscle moment arm Joint contact force Muscle recruitment Musculoskeletal simulation Knee flexion 



Funding for this work was provided by the Dept of Veterans Affairs, Rehab R&D (Proj. A6816R) and by the Paralyzed Veterans of America Endowment for Spinal Cord Injury at Stanford University.

Conflict of interest

Matthew S. DeMers collaborated on the development of the Steele 2012 model evaluated in this manuscript. James M. Shippen is the primary developer of the Biomechanics of Bodies software used in this manuscript.


  1. 1.
    Ahmed, S., and K. Babski-Reeves. Assessment of upper extremity postures in novice and expert during simulated carpentry tasks. Proc. Hum. Factors Ergonomics Soc. Annu. Meet. 56:1173–1177, 2012.CrossRefGoogle Scholar
  2. 2.
    Alkjaer, T., M. R. Wieland, M. S. Andersen, E. B. Simonsen, and J. Rasmussen. Computational modeling of a forward lunge: towards a better understanding of the function of the cruciate ligaments. J. Anat. 221:590–597, 2012.PubMedCrossRefGoogle Scholar
  3. 3.
    An, K. N., K. Takahashi, T. P. Harrigan, and E. Y. Chao. Determination of muscle orientations and moment arms. J. Biomech. Eng. 106:280–282, 1984.PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen, M. S., M. de Zee, S. Dendorfer, B. MacWilliams, and J. Rasmussen. Validation of a detailed lower extremity model based on the klein horsman data set. In: The 12th International Symposium On Computer Simulation In Biomechanics, edited by Proceedings Of. Cape Town: South Africa, 2009, pp. 27–28.Google Scholar
  5. 5.
    Andrews, B. J., J. Shippen, R. S. Gibbons, B. May, and G. Wheeler. FES rowing biomechanics: fixed and floating stretcher ergometers. In: 17th Annual International FES Society Conference: Smart Machines—Neural Evolution, Banff, Alberta, Canada, 2012.Google Scholar
  6. 6.
    Arnold, A. S., S. Salinas, D. J. Asakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5:108–119, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.PubMedCrossRefGoogle Scholar
  8. 8.
    Azmy, C., S. Guérard, X. Bonnet, F. Gabrielli, and W. Skalli. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty. Orthop. Traumatol. Surg. Res. 96:28–36, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Blemker, S. S., D. S. Asakawa, G. E. Gold, and S. L. Delp. Image-based musculoskeletal modeling: applications, advances, and future opportunities. J. Magn. Reson. Imaging 25:441–451, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Buford, W. L., Jr., F. M. Ivey, Jr., J. D. Malone, R. M. Patterson, G. L. Peare, D. K. Nguyen, and A. A. Stewart. Muscle balance at the knee-moment arms for the normal knee and the ACL-minus knee. IEEE Trans. Rehabil. Eng. 5:367–379, 1997Google Scholar
  11. 11.
    Chang, C.-Y., J. D. Rupp, M. P. Reed, R. E. Hughes, and L. W. Schneider. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling. Stapp Car Crash J. 53:291–328, 2009.PubMedGoogle Scholar
  12. 12.
    Correa, T. A., R. Baker, H. K. Graham, and M. G. Pandy. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. J. Biomech. 44:2096–2105, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Damsgaard, M., J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 14:1100–1111, 2006.CrossRefGoogle Scholar
  14. 14.
    de Zee, M., M. Lund, C. Schwartz, C. Olesen, and J. Rasmussen. Validation of musculoskeletal models: the importance of trend validations. Leuven, Belgium: IUTAM Symposium on Human Movement Analysis and Simulation, 2010.Google Scholar
  15. 15.
    Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Delp, S. L., and J. P. Loan. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25:21–34, 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.PubMedCrossRefGoogle Scholar
  18. 18.
    D’Lima, D. D., N. Steklov, S. Patil, and C. W. Colwell, Jr. The Mark Coventry Award: in vivo knee forces during recreation and exercise after knee arthroplasty. Clin. Orthop. Relat. Res. 466:2605–2611, 2008.PubMedCrossRefGoogle Scholar
  19. 19.
    Draganich, L. F., T. P. Andriacchi, and G. B. Andersson. Interaction between intrinsic knee mechanics and the knee extensor mechanism. J. Orthop. Res. 5:539–547, 1987.PubMedCrossRefGoogle Scholar
  20. 20.
    Dubowsky, S. R., J. Rasmussen, S. A. Sisto, and N. A. Langrana. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces. J. Biomech. 41:2981–2988, 2008.PubMedCrossRefGoogle Scholar
  21. 21.
    Dudley-Javoroski, S., A. E. Littmann, S.-H. Chang, C. L. McHenry, and R. K. Shields. Enhancing muscle force and femur compressive loads via feedback-controlled stimulation of paralyzed quadriceps in humans. Arch. Phys. Med. Rehabil. 92:242–249, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Duffy, V. G. Handbook Of Digital Human Modeling: Research For Applied Ergonomics And Human Factors Engineering 1st ed. Boca Raton: CRC Press, Inc., 2008.CrossRefGoogle Scholar
  23. 23.
    Escamilla, R. F., G. S. Fleisig, T. M. Lowry, S. W. Barrentine, and J. R. Andrews. A three-dimensional biomechanical analysis of the squat during varying stance widths. Med. Sci. Sports Exerc. 33:984–998, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    Escamilla, R. F., G. S. Fleisig, N. Zheng, J. E. Lander, S. W. Barrentine, J. R. Andrews, B. W. Bergemann, and C. T. Moorman, III. Effects of technique variations on knee biomechanics during the squat and leg press. Med. Sci. Sports Exerc. 33:1552–1566, 2001.PubMedCrossRefGoogle Scholar
  25. 25.
    Farrell, K. C., K. D. Reisinger, and M. D. Tillman. Force and repetition in cycling: possible implications for iliotibial band friction syndrome. Knee 10:103–109, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Fotoohabadi, M. R., E. A. Tully, and M. P. Galea. Kinematics of rising from a chair: image-based analysis of the sagittal hip-spine movement pattern in elderly people who are healthy. Phys. Ther. 90:561–571, 2010.PubMedCrossRefGoogle Scholar
  27. 27.
    Fregly, B. J., T. F. Besier, D. G. Lloyd, S. L. Delp, S. A. Banks, M. G. Pandy, and D. D. D’Lima. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30:503–513, 2012.PubMedCrossRefGoogle Scholar
  28. 28.
    Frey Law, L. A., and R. K. Shields. Femoral loads during passive, active, and active-resistive stance after spinal cord injury: a mathematical model. Clin. Biomech. (Bristol, Avon) 19:313–321, 2004.Google Scholar
  29. 29.
    Grood, E. S., W. J. Suntay, F. R. Noyes, and D. L. Butler. Biomechanics of the knee-extension exercise. Effect of cutting the anterior cruciate ligament. J. Bone Joint Surg. Am. 66:725–734, 1984.PubMedGoogle Scholar
  30. 30.
    Grujicic, M., G. Arakere, X. Xie, M. LaBerge, A. Grujicic, D. W. Wagner, and A. Vallejo. Design-optimization and material selection for a femoral-fracture fixation-plate implant. Mater. Des. 31:3463–3473, 2010.CrossRefGoogle Scholar
  31. 31.
    Grujicic, M., B. Pandurangan, X. Xie, A. K. Gramopadhye, D. W. Wagner, and M. Ozen. Musculoskeletal computational analysis of the influence of car-seat design/adjustments on long-distance driving fatigue. Int. J. Ind. Ergon. 40:345–355, 2010.CrossRefGoogle Scholar
  32. 32.
    Grujicic, M., X. Xie, G. Arakere, A. Grujicic, D. W. Wagner, and A. Vallejo. Design-optimization and material selection for a proximal radius fracture-fixation implant. J. Mater. Eng. Perform. 19:1090–1103, 2010.CrossRefGoogle Scholar
  33. 33.
    Hamner, S. R., A. Seth, and S. L. Delp. Muscle contributions to propulsion and support during running. J. Biomech. 43:2709–2716, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Hettinga, D. M., and B. J. Andrews. The feasibility of functional electrical stimulation indoor rowing for high-energy training and sport. Neuromodulation 10:291–297, 2007.PubMedCrossRefGoogle Scholar
  35. 35.
    Iwami, T., K. Miyawaki, K. Hiramoto, M. Takeshima, T. Matsunaga, Y. Shimada, and G. Obinata. Biomechanical analysis and muscle tension estimation of the lower extremities using EMG data. International Symposium on Micro-NanoMechatronics and Human Science (MHS), 2010, 2010, pp 175–180.Google Scholar
  36. 36.
    Kiratli, B. J. Immobilization osteopenia. In: Osteoporosis, 2nd edition. San Diego: Academic Press, 2001, pp. 207–227.Google Scholar
  37. 37.
    Klein Horsman, M. D., H. F. J. M. Koopman, F. C. T. van der Helm, L. P. Prosé, and H. E. J. Veeger. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. (Bristol, Avon) 22:239–247, 2007.Google Scholar
  38. 38.
    Klein Horsman, M. D. The Twente Lower Extremity Model: Consistent Dynamic Simulation of the Human Locomotor Apparatus [dissertation]. Department of Engineering Technology. Enschede, The Netherlands: University of Twente, 2007.Google Scholar
  39. 39.
    Krevolin, J. L., M. G. Pandy, and J. C. Pearce. Moment arm of the patellar tendon in the human knee. J. Biomech. 37:785–788, 2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Kutzner, I., B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, and G. Bergmann. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43:2164–2173, 2010.PubMedCrossRefGoogle Scholar
  41. 41.
    Leszko, F., K. R. Hovinga, A. L. Lerner, R. D. Komistek, and M. R. Mahfouz. In vivo normal knee kinematics: is ethnicity or gender an influencing factor? Clin. Orthop. Relat. Res. 469:95–106, 2011.PubMedCrossRefGoogle Scholar
  42. 42.
    Lund, M. E., M. de Zee, M. S. Andersen, and J. Rasmussen. On validation of multibody musculoskeletal models. Proc. Inst. Mech. Eng. H. 226:82–94, 2012.PubMedCrossRefGoogle Scholar
  43. 43.
    McFadyen, B. J., and D. A. Winter. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 21:733–744, 1988.PubMedCrossRefGoogle Scholar
  44. 44.
    McHenry, C. L., and R. K. Shields. A biomechanical analysis of exercise in standing, supine, and seated positions: Implications for individuals with spinal cord injury. J. Spinal Cord Med. 35:140–147, 2012.PubMedCrossRefGoogle Scholar
  45. 45.
    Modenese, L., A. T. M. Phillips, and A. M. J. Bull. An open source lower limb model: hip joint validation. J. Biomech. 44:2185–2193, 2011.PubMedCrossRefGoogle Scholar
  46. 46.
    Perry, J. Gait Analysis : Normal And Pathological Function. Thorofare, N.J.: SLACK inc., 1992.Google Scholar
  47. 47.
    Pontonnier, C., M. de Zee, A. Samani, G. Dumont, and P. Madeleine. Trend Validation of a Musculoskeletal Model with a Workstation Design Parameter. ISB Technical Group on Computer Simulation Symposium 2011, Leuven, Belgium, 2011.Google Scholar
  48. 48.
    Raikova, R. T., and B. I. Prilutsky. Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J. Biomech. 34:1243–1255, 2001.PubMedCrossRefGoogle Scholar
  49. 49.
    Rasmussen, J., M. Boocock, and G. Paul. Advanced musculoskeletal simulation as an ergonomic design method. Work: J. Prev. Assess. Rehabil. 41:6107–6111, 2012.Google Scholar
  50. 50.
    Rasmussen, J., and M. de Zee. Design optimization of airline seats. In: Sae Transactions: Journal of Passenger Cars—Electronic and Electrical Systems, 2008.Google Scholar
  51. 51.
    Roebuck, J. A. Anthropometric Methods : Designing To Fit The Human Body. Santa Monica, CA, USA: Human Factors and Ergonomics Society, 1995.Google Scholar
  52. 52.
    Scheys, L., K. Desloovere, P. Suetens, and I. Jonkers. Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion. J. Biomech. 44:1346–1353, 2011.PubMedCrossRefGoogle Scholar
  53. 53.
    Scheys, L., A. Spaepen, P. Suetens, and I. Jonkers. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture 28:640–648, 2008.PubMedCrossRefGoogle Scholar
  54. 54.
    Scheys, L., A. Van Campenhout, A. Spaepen, P. Suetens, and I. Jonkers. Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths. Gait Posture 28:358–365, 2008.PubMedCrossRefGoogle Scholar
  55. 55.
    Seth, A., M. Sherman, J. A. Reinbolt, and S. L. Delp. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2:212–232, 2011.CrossRefGoogle Scholar
  56. 56.
    Sherman, M., A. Seth, and S. Delp. How to compute muscle moment arm using generalized coordinates, Rev. 0.2. 2010.
  57. 57.
    Shippen, J. M., and B. May. Calculation of muscle loading and joint contact forces during the rock step in Irish dance. J. Dance Med. Sci. 14:11–18, 2010.PubMedGoogle Scholar
  58. 58.
    Steele, K. M., M. S. Demers, M. H. Schwartz, and S. L. Delp. Compressive tibiofemoral force during crouch gait. Gait Posture 35:556–560, 2012.PubMedCrossRefGoogle Scholar
  59. 59.
    Trepczynski, A., I. Kutzner, E. Kornaropoulos, W. R. Taylor, G. N. Duda, G. Bergmann, and M. O. Heller. Patellofemoral joint contact forces during activities with high knee flexion. J. Orthop. Res. 30:408–415, 2012.PubMedCrossRefGoogle Scholar
  60. 60.
    Vandenberghe, A., L. Bosmans, J. De Schutter, S. Swinnen, and I. Jonkers. Quantifying individual muscle contribution to three-dimensional reaching tasks. Gait Posture 35:579–584, 2012.PubMedCrossRefGoogle Scholar
  61. 61.
    Viceconti, M. A tentative taxonomy for predictive models in relation to their falsifiability. Philos. Trans. A Math. Phys. Eng. Sci. 369:4149–4161, 2011.PubMedCrossRefGoogle Scholar
  62. 62.
    Viceconti, M., D. Testi, F. Taddei, S. Martelli, G. J. Clapworthy, and S. V. S. Jan. Biomechanics Modeling of the Musculoskeletal Apparatus: Status and Key Issues. Proc. IEEE 94:725–739, 2006.CrossRefGoogle Scholar
  63. 63.
    Wagner, D. W., J. Rasmussen, and M. P. Reed. Assessing the importance of motion dynamics for ergonomic analysis of manual materials handling tasks using the AnyBody Modeling System. In: Sae Transactions: Journal Of Passenger Cars—Mechanical Systems, 2007, pp. 2092–2101.Google Scholar
  64. 64.
    Wagner, D. W., K. Divringi, C. Ozcan, M. Grujicic, B. Pandurangan, and A. Grujicic. Combined musculoskeletal dynamics/structural finite element analysis of femur physiological loads during walking. Multidiscip. Model. Mater. Struct. 6:417–437, 2010.Google Scholar
  65. 65.
    Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21:965–974, 1988.PubMedCrossRefGoogle Scholar
  66. 66.
    Ward, S. R., C. M. Eng, L. H. Smallwood, and R. L. Lieber. Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res. 467:1074–1082, 2009.PubMedCrossRefGoogle Scholar
  67. 67.
    Wilk, K. E., R. F. Escamilla, G. S. Fleisig, S. W. Barrentine, J. R. Andrews, and M. L. Boyd. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am. J. Sports Med. 24:518–527, 1996.PubMedCrossRefGoogle Scholar
  68. 68.
    Wilson, N. A., and F. T. Sheehan. Dynamic in vivo 3-dimensional moment arms of the individual quadriceps components. J. Biomech. 42:1891–1897, 2009.PubMedCrossRefGoogle Scholar
  69. 69.
    Yamaguchi, G. T., and F. E. Zajac. A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 22:1–10, 1989.PubMedCrossRefGoogle Scholar
  70. 70.
    Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.PubMedGoogle Scholar

Copyright information

© BMES (Outside the U.S.) 2013

Authors and Affiliations

  • David W. Wagner
    • 1
  • Vahagn Stepanyan
    • 2
  • James M. Shippen
    • 3
  • Matthew S. DeMers
    • 2
  • Robin S. Gibbons
    • 4
  • Brian J. Andrews
    • 5
  • Graham H. Creasey
    • 6
  • Gary S. Beaupre
    • 1
    • 2
  1. 1.Center for Tissue Regeneration, Repair, and RestorationVA Palo Alto Health Care SystemPalo AltoUSA
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  3. 3.Industrial DesignCoventry UniversityWorcestershireUK
  4. 4.School of Sport and EducationBrunel UniversityMiddlesexUK
  5. 5.Nuffield Department of Surgical SciencesOxford UniversityOxfordUK
  6. 6.Spinal Cord Injury ServiceVA Palo Alto Health Care SystemPalo AltoUSA

Personalised recommendations