# Model-based Quantification of Cerebral Hemodynamics as a Physiomarker for Alzheimer’s Disease?

- 321 Downloads
- 13 Citations

## Abstract

Previous studies have found that Alzheimer’s disease (AD) impairs cerebral vascular function, even at early stages of the disease. This offers the prospect of a useful diagnostic method for AD, if cerebral vascular dysfunction can be quantified reliably within practical clinical constraints. We present a recently developed methodology that utilizes a data-based dynamic nonlinear closed-loop model of cerebral hemodynamics to compute “physiomarkers” quantifying the state of cerebral flow autoregulation to pressure-changes (CA) and cerebral CO2 vasomotor reactivity (CVMR) in each subject. This model is estimated from beat-to-beat measurements of mean arterial blood pressure, mean cerebral blood flow velocity and end-tidal CO2, which can be made reliably and non-invasively under resting conditions. This model may also take an open-loop form and comparisons are made with the closed-loop counterpart. The proposed model-based physiomarkers take the form of two indices that quantify the gain of the CA and CVMR processes in each subject. It was found in an initial set of clinical data that the CVMR index delineates AD patients from control subjects and, therefore, may prove useful in the improved diagnosis of early-stage AD.

## Keywords

Alzheimer’s disease Physiomarkers Modeling cerebral hemodynamics Closed-loop modeling Cerebral flow autoregulation Cerebral vasomotor reactivity## Notes

### Acknowledgments

This work was supported in part by the Biomedical Simulations Resource at the University of Southern California under NIH/NIBIB grant P41-EB001978 and NIA R01AG033106-01 grant to the UT-Southwestern Medical Center.

## References

- 1.Aaslid, R., K. F. Lindegaard, W. Sorteberg, and H. Nornes. Cerebral autoregulation dynamics in humans.
*Stroke*20:45–52, 1989.PubMedCrossRefGoogle Scholar - 2.Bell, R. D., and B. V. Zlokovic. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease.
*Acta Neuropathol.*118(1):103–113, 2009.PubMedCrossRefGoogle Scholar - 3.Bellapart, J., and J. F. Fraser. Transcranial Doppler assessment of cerebral autoregulation.
*Ultrasound Med. Biol.*2009. doi: 10.1016/j.ultrasmedbio.PubMedGoogle Scholar - 4.Bowler, J. V. Acetylcholinesterase inhibitors for vascular dementia and Alzheimer’s disease combined with cerebrovascular disease.
*Stroke*34:584–586, 2003.PubMedCrossRefGoogle Scholar - 5.Claassen, J. A., R. Diaz-Arrastia, K. Martin-Cook, B. D. Levine, and R. Zhang. Altered cerebral hemodynamics in early Alzheimer disease: a pilot study using transcranial Doppler.
*J. Alzheimers Dis.*17(3):621–629, 2009.PubMedGoogle Scholar - 6.Claassen, J. A., and R. Zhang. Cerebral autoregulation in Alzheimer’s disease.
*J. Cereb. Blood Flow Metab.*31(7):1572–1577, 2011.PubMedCrossRefGoogle Scholar - 7.Cupini, L. M., M. Diomedi, F. Placidi, M. Silvestrini, and P. Giacomini. Cerebrovascular reactivity and subcortical infarctions.
*Arch. Neurol.*58:577–581, 2001.PubMedCrossRefGoogle Scholar - 8.Czosnyka, M., K. Brady, M. Reinhard, P. Smielewski, and L. Steiner. Monitoring of cerebrovascular autoregulation: facts, myths and missing links.
*Neurocrit. Care*10:373–386, 2009.PubMedCrossRefGoogle Scholar - 9.Czosnyka, M., S. Piechnik, H. Richards, P. Kirkpatrick, P. Smielewski, and J. Pickard. Contribution of mathematical modeling to the interpretation of bedside tests of cerebrovascular autoregulation.
*J. Neurol. Neurosurg. Psychiatry*63:721–731, 1997.PubMedCrossRefGoogle Scholar - 10.de la Torre, J. C. Alzheimer disease as a vascular disorder. Nosological evidence.
*Stroke*33:1152–1162, 2002.PubMedCrossRefGoogle Scholar - 11.Giller, C. A. The frequency-dependent behavior of cerebral autoregulation.
*Neurosurgery*27:362–368, 1990.PubMedCrossRefGoogle Scholar - 12.Giller, C. A., and M. Mueller. Linearity and nonlinearity in cerebral hemodynamics.
*Med. Eng. Phys.*25:633–646, 2003.PubMedCrossRefGoogle Scholar - 13.Gorelick, P. B. Risk factors for vascular dementia and Alzheimer disease.
*Stroke*35:2620–2622, 2004.PubMedCrossRefGoogle Scholar - 14.Hachinski, V., and C. Iadecola. Vascular cognitive impairment: introduction.
*Stroke*35:2615, 2004.CrossRefGoogle Scholar - 15.Hanon, O., M. L. Seux, H. Lenoir, A. S. Rigaud, and F. Forette. Prevention of dementia and cerebroprotection with antihypertensive drugs.
*Curr. Hypertens. Rep.*6:201–207, 2004.PubMedCrossRefGoogle Scholar - 16.Hardy, J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal.
*J. Neurochem.*110:1129–1134, 2009.PubMedCrossRefGoogle Scholar - 17.Iadecola, C. Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer’s dementia.
*Cell. Mol. Neurobiol.*23:681–689, 2003.PubMedCrossRefGoogle Scholar - 18.Iadecola, C., and P. B. Gorelick. Converging pathogenic mechanisms in vascular and neurodegenerative dementia.
*Stroke*34:335–337, 2003.PubMedCrossRefGoogle Scholar - 19.Kalaria, R. N. Small vessel disease and Alzheimer’s dementia: pathological considerations.
*Cerebrovasc. Dis.*13:48–52, 2002.PubMedCrossRefGoogle Scholar - 20.Kiyoshi, N., K. Kazama, L. Younkin, S. G. Younkin, G. A. Carlson, and C. Iadecola. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein.
*Am. J. Physiol. Heart Circ. Physiol.*283:H315–H323, 2002.Google Scholar - 21.Langa, K. M., N. L. Foster, and E. B. Larson. Mixed dementia: emerging concepts and therapeutic implications.
*J. Am. Med. Assoc.*292:2901–2908, 2004.CrossRefGoogle Scholar - 22.Maeda, H., M. Matsumoto, N. Handa, H. Hougaku, S. Ogawa, T. Itoh, Y. Tsukamoto, and T. Kamada. Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial Doppler method.
*Stroke*24:670–675, 1993.PubMedCrossRefGoogle Scholar - 23.Markus, H. S., and M. J. Harrison. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus.
*Stroke*23:668–673, 1992.PubMedCrossRefGoogle Scholar - 24.Marmarelis, V. Z. Identification of nonlinear biological systems using Laguerre expansions of kernels.
*Ann. Biomed. Eng.*21:573–589, 1993.PubMedCrossRefGoogle Scholar - 25.Marmarelis, V. Z. Modeling methodology for nonlinear physiological systems.
*Ann. Biomed. Eng.*25:239–251, 1997.PubMedCrossRefGoogle Scholar - 26.Marmarelis, P. Z. and V. Z. Marmarelis. Analysis of Physiological Systems: The White-Noise Approach. Plenum, New York, 1978 (Russian translation, Mir Press, Moscow, 1981; Chinese translation, Academy of Sciences Press, Beijing, 1990).Google Scholar
- 27.Marmarelis, V. Z., D. C. Shin, and R. Zhang. Linear and nonlinear modeling of cerebral flow autoregulation using Principal Dynamic Modes.
*Open Biomed. Eng. J.*6:42–55, 2012.PubMedCrossRefGoogle Scholar - 28.Marmarelis, V. Z., D. C. Shin, M. E. Orme, and R. Zhang. Closed-loop dynamic modeling of cerebral hemodynamics.
*Ann. Biomed. Eng.*(in press). doi: 10.1007/s10439-012-0736-8. - 29.Marmarelis, V. Z. Nonlinear Dynamic Modeling of Physiological Systems. Wiley-Interscience, 2004.Google Scholar
- 30.Mitsis, G. D., M. J. Poulin, P. A. Robbins, and V. Z. Marmarelis. Nonlinear modeling of the dynamic effects of arterial pressure and CO
_{2}variations on cerebral blood flow in healthy humans.*IEEE Trans. Biomed. Eng.*51:1932–1943, 2004.PubMedCrossRefGoogle Scholar - 31.Mitsis, G. D., R. Zhang, B. D. Levine, and V. Z. Marmarelis. Modeling of nonlinear physiological systems with fast and slow dynamics II: application to cerebral autoregulation.
*Ann. Biomed. Eng.*30:555–565, 2002.PubMedCrossRefGoogle Scholar - 32.Mitsis, G. D., R. Zhang, B. D. Levine, and V. Z. Marmarelis. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
*J. Appl. Physiol.*101:354–366, 2006.PubMedCrossRefGoogle Scholar - 33.Mitsis, G. D., R. Zhang, B. D. Levine, E. Tzanalaridou, D. G. Katritsis, and V. Z. Marmarelis. Nonlinear analysis of autonomic control of cerebral hemodynamics.
*IEEE Eng. Med. Biol.*28:54–62, 2009.CrossRefGoogle Scholar - 34.Murray, I. V. J., J. F. Proza, F. Sohrabji, and J. M. Lawler. Vascular and metabolic dysfunction in Alzheimer’s disease: a review.
*Exp. Biol. Med.*236(7):772–782, 2011.CrossRefGoogle Scholar - 35.Nicolakakis, N., and E. Hamel. Neurovascular function in Alzheimer’s disease patients and experimental models.
*J. Cereb. Blood Flow Metab.*31(6):1354–1370, 2011.PubMedCrossRefGoogle Scholar - 36.Panerai, R. B. Cerebral autoregulation: from models to clinical applications.
*Cardiovasc. Eng.*8:42–59, 2008.PubMedCrossRefGoogle Scholar - 37.Panerai, R. B. Transcranial Doppler for evaluation of cerebral autoregulation.
*Clin. Auton. Res.*2009. doi: 10.1007/s10286-009-0011-8.PubMedGoogle Scholar - 38.Panerai, R. B., S. L. Dawson, and J. F. Potter. Linear and nonlinear analysis of human dynamic cerebral autoregulation.
*Am. J. Physiol.*277:H1089–H1099, 1999.PubMedGoogle Scholar - 39.Panerai, R. B., D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans. Multivariate dynamic analysis of cerebral blood flow regulation in humans.
*IEEE Trans. Biomed. Eng.*47:419–423, 2000.PubMedCrossRefGoogle Scholar - 40.Paulson, O. B., S. Strandgaard, and L. Edvinsson. Cerebral autoregulation.
*Cerebrovasc. Brain Metab. Rev.*2:161–192, 1990.PubMedGoogle Scholar - 41.Roher, A. E., Y. M. Kuo, C. Esh, C. Knebel, N. Weiss, W. Kalbach, D. C. Luehrs, J. L. Childress, T. G. Beach, R. O. Weller, and T. A. Kokjohn. Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease.
*Mol. Med.*9:112–122, 2003.PubMedGoogle Scholar - 42.Schneider, J. A., R. S. Wilson, J. L. Bienias, D. A. Evans, and D. A. Bennett. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology.
*Neurology*62:1148–1155, 2004.PubMedCrossRefGoogle Scholar - 43.Sellke, F. W., S. Seshadri, H. C. Chui, R. T. Higashida, R. Lindquist, P. M. Nilsson, G. C. Roman, R. C. Petersen, J. A. Schneider, C. Tzourio, D. K. Arnett, D. Bennett, C. Iadecola, L. J. Launer, S. Laurent, O. L. Lopez, D. Nyenhuis, P. B. Gorelick, A. Scuteri, S. E. Black, C. DeCarli, and S. M. Greenberg. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the AHA/ASA.
*Stroke*42(9):2672–2713, 2011.PubMedCrossRefGoogle Scholar - 44.Silvestrini, M., P. Pasqualetti, R. Baruffaldi, M. Bartolini, Y. Handouk, M. Matteis, F. Moffa, L. Provinciali, and F. Vernieri. Cerebrovascular reactivity and cognitive decline in patients with Alzheimer’s disease.
*Stroke*37:1010–1015, 2006.PubMedCrossRefGoogle Scholar - 45.Smith, E. E., and S. M. Greenberg. Amyloid-beta, blood vessels and brain function.
*Stroke*40(7):2601–2606, 2009.PubMedCrossRefGoogle Scholar - 46.Tantucci, C., P. Bottini, C. Fiorani, M. L. Dottorini, F. Santeusanio, L. Provinciali, C. A. Sorbini, and G. Casucci. Cerebrovascular reactivity and hypercapnic respiratory drive in diabetic autonomic neuropathy.
*J. Appl. Physiol.*90:889–896, 2001.PubMedGoogle Scholar - 47.Tong, X. K., N. Nicolakakis, A. Kocharyan, and E. Hamel. Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer’s disease.
*J. Neurosci.*25(48):11165–11174, 2005.PubMedCrossRefGoogle Scholar - 48.van Beek, A. H., J. A. Claassen, M. G. Rikkert, and R. W. Jansen. Cerebral autoregulation: overview of current concepts and methodology with special focus on the elderly.
*J. Cereb. Blood Flow Metab.*28:1071–1085, 2008.PubMedCrossRefGoogle Scholar - 49.van Beek, A. H., J. Lagro, M. G. Olde-Rikkert, R. Zhang, and J. A. Claassen. Oscillations in cerebral blood flow and cortical oxygenation in Alzheimer’s disease.
*Neurobiol. Aging*33(2):428.e21–428.e31, 2012.CrossRefGoogle Scholar - 50.Yaffe, K., E. Barrett-Connor, F. Lin, and D. Grady. Serum lipoprotein levels, statin use, and cognitive function in older women.
*Arch. Neurol.*59:378–384, 2002.PubMedCrossRefGoogle Scholar - 51.Zhang, R., J. H. Zuckerman, C. A. Giller, and B. D. Levine. Transfer function analysis of dynamic cerebral autoregulation in humans.
*Am. J. Physiol.*274:233–241, 1998.Google Scholar - 52.Zhang, R., J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine. Autonomic neural control of dynamic cerebral autoregulation in humans.
*Circulation*106:1814–1820, 2002.PubMedCrossRefGoogle Scholar