Annals of Biomedical Engineering

, Volume 41, Issue 11, pp 2296–2317 | Cite as

Model-based Quantification of Cerebral Hemodynamics as a Physiomarker for Alzheimer’s Disease?

  • V. Z. MarmarelisEmail author
  • D. C. Shin
  • M. E. Orme
  • R. Zhang


Previous studies have found that Alzheimer’s disease (AD) impairs cerebral vascular function, even at early stages of the disease. This offers the prospect of a useful diagnostic method for AD, if cerebral vascular dysfunction can be quantified reliably within practical clinical constraints. We present a recently developed methodology that utilizes a data-based dynamic nonlinear closed-loop model of cerebral hemodynamics to compute “physiomarkers” quantifying the state of cerebral flow autoregulation to pressure-changes (CA) and cerebral CO2 vasomotor reactivity (CVMR) in each subject. This model is estimated from beat-to-beat measurements of mean arterial blood pressure, mean cerebral blood flow velocity and end-tidal CO2, which can be made reliably and non-invasively under resting conditions. This model may also take an open-loop form and comparisons are made with the closed-loop counterpart. The proposed model-based physiomarkers take the form of two indices that quantify the gain of the CA and CVMR processes in each subject. It was found in an initial set of clinical data that the CVMR index delineates AD patients from control subjects and, therefore, may prove useful in the improved diagnosis of early-stage AD.


Alzheimer’s disease Physiomarkers Modeling cerebral hemodynamics Closed-loop modeling Cerebral flow autoregulation Cerebral vasomotor reactivity 



This work was supported in part by the Biomedical Simulations Resource at the University of Southern California under NIH/NIBIB grant P41-EB001978 and NIA R01AG033106-01 grant to the UT-Southwestern Medical Center.


  1. 1.
    Aaslid, R., K. F. Lindegaard, W. Sorteberg, and H. Nornes. Cerebral autoregulation dynamics in humans. Stroke 20:45–52, 1989.PubMedCrossRefGoogle Scholar
  2. 2.
    Bell, R. D., and B. V. Zlokovic. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 118(1):103–113, 2009.PubMedCrossRefGoogle Scholar
  3. 3.
    Bellapart, J., and J. F. Fraser. Transcranial Doppler assessment of cerebral autoregulation. Ultrasound Med. Biol. 2009. doi: 10.1016/j.ultrasmedbio.PubMedGoogle Scholar
  4. 4.
    Bowler, J. V. Acetylcholinesterase inhibitors for vascular dementia and Alzheimer’s disease combined with cerebrovascular disease. Stroke 34:584–586, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Claassen, J. A., R. Diaz-Arrastia, K. Martin-Cook, B. D. Levine, and R. Zhang. Altered cerebral hemodynamics in early Alzheimer disease: a pilot study using transcranial Doppler. J. Alzheimers Dis. 17(3):621–629, 2009.PubMedGoogle Scholar
  6. 6.
    Claassen, J. A., and R. Zhang. Cerebral autoregulation in Alzheimer’s disease. J. Cereb. Blood Flow Metab. 31(7):1572–1577, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Cupini, L. M., M. Diomedi, F. Placidi, M. Silvestrini, and P. Giacomini. Cerebrovascular reactivity and subcortical infarctions. Arch. Neurol. 58:577–581, 2001.PubMedCrossRefGoogle Scholar
  8. 8.
    Czosnyka, M., K. Brady, M. Reinhard, P. Smielewski, and L. Steiner. Monitoring of cerebrovascular autoregulation: facts, myths and missing links. Neurocrit. Care 10:373–386, 2009.PubMedCrossRefGoogle Scholar
  9. 9.
    Czosnyka, M., S. Piechnik, H. Richards, P. Kirkpatrick, P. Smielewski, and J. Pickard. Contribution of mathematical modeling to the interpretation of bedside tests of cerebrovascular autoregulation. J. Neurol. Neurosurg. Psychiatry 63:721–731, 1997.PubMedCrossRefGoogle Scholar
  10. 10.
    de la Torre, J. C. Alzheimer disease as a vascular disorder. Nosological evidence. Stroke 33:1152–1162, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Giller, C. A. The frequency-dependent behavior of cerebral autoregulation. Neurosurgery 27:362–368, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Giller, C. A., and M. Mueller. Linearity and nonlinearity in cerebral hemodynamics. Med. Eng. Phys. 25:633–646, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Gorelick, P. B. Risk factors for vascular dementia and Alzheimer disease. Stroke 35:2620–2622, 2004.PubMedCrossRefGoogle Scholar
  14. 14.
    Hachinski, V., and C. Iadecola. Vascular cognitive impairment: introduction. Stroke 35:2615, 2004.CrossRefGoogle Scholar
  15. 15.
    Hanon, O., M. L. Seux, H. Lenoir, A. S. Rigaud, and F. Forette. Prevention of dementia and cerebroprotection with antihypertensive drugs. Curr. Hypertens. Rep. 6:201–207, 2004.PubMedCrossRefGoogle Scholar
  16. 16.
    Hardy, J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem. 110:1129–1134, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Iadecola, C. Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer’s dementia. Cell. Mol. Neurobiol. 23:681–689, 2003.PubMedCrossRefGoogle Scholar
  18. 18.
    Iadecola, C., and P. B. Gorelick. Converging pathogenic mechanisms in vascular and neurodegenerative dementia. Stroke 34:335–337, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Kalaria, R. N. Small vessel disease and Alzheimer’s dementia: pathological considerations. Cerebrovasc. Dis. 13:48–52, 2002.PubMedCrossRefGoogle Scholar
  20. 20.
    Kiyoshi, N., K. Kazama, L. Younkin, S. G. Younkin, G. A. Carlson, and C. Iadecola. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am. J. Physiol. Heart Circ. Physiol. 283:H315–H323, 2002.Google Scholar
  21. 21.
    Langa, K. M., N. L. Foster, and E. B. Larson. Mixed dementia: emerging concepts and therapeutic implications. J. Am. Med. Assoc. 292:2901–2908, 2004.CrossRefGoogle Scholar
  22. 22.
    Maeda, H., M. Matsumoto, N. Handa, H. Hougaku, S. Ogawa, T. Itoh, Y. Tsukamoto, and T. Kamada. Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial Doppler method. Stroke 24:670–675, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    Markus, H. S., and M. J. Harrison. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 23:668–673, 1992.PubMedCrossRefGoogle Scholar
  24. 24.
    Marmarelis, V. Z. Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann. Biomed. Eng. 21:573–589, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Marmarelis, V. Z. Modeling methodology for nonlinear physiological systems. Ann. Biomed. Eng. 25:239–251, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Marmarelis, P. Z. and V. Z. Marmarelis. Analysis of Physiological Systems: The White-Noise Approach. Plenum, New York, 1978 (Russian translation, Mir Press, Moscow, 1981; Chinese translation, Academy of Sciences Press, Beijing, 1990).Google Scholar
  27. 27.
    Marmarelis, V. Z., D. C. Shin, and R. Zhang. Linear and nonlinear modeling of cerebral flow autoregulation using Principal Dynamic Modes. Open Biomed. Eng. J. 6:42–55, 2012.PubMedCrossRefGoogle Scholar
  28. 28.
    Marmarelis, V. Z., D. C. Shin, M. E. Orme, and R. Zhang. Closed-loop dynamic modeling of cerebral hemodynamics. Ann. Biomed. Eng. (in press). doi: 10.1007/s10439-012-0736-8.
  29. 29.
    Marmarelis, V. Z. Nonlinear Dynamic Modeling of Physiological Systems. Wiley-Interscience, 2004.Google Scholar
  30. 30.
    Mitsis, G. D., M. J. Poulin, P. A. Robbins, and V. Z. Marmarelis. Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans. IEEE Trans. Biomed. Eng. 51:1932–1943, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Mitsis, G. D., R. Zhang, B. D. Levine, and V. Z. Marmarelis. Modeling of nonlinear physiological systems with fast and slow dynamics II: application to cerebral autoregulation. Ann. Biomed. Eng. 30:555–565, 2002.PubMedCrossRefGoogle Scholar
  32. 32.
    Mitsis, G. D., R. Zhang, B. D. Levine, and V. Z. Marmarelis. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling. J. Appl. Physiol. 101:354–366, 2006.PubMedCrossRefGoogle Scholar
  33. 33.
    Mitsis, G. D., R. Zhang, B. D. Levine, E. Tzanalaridou, D. G. Katritsis, and V. Z. Marmarelis. Nonlinear analysis of autonomic control of cerebral hemodynamics. IEEE Eng. Med. Biol. 28:54–62, 2009.CrossRefGoogle Scholar
  34. 34.
    Murray, I. V. J., J. F. Proza, F. Sohrabji, and J. M. Lawler. Vascular and metabolic dysfunction in Alzheimer’s disease: a review. Exp. Biol. Med. 236(7):772–782, 2011.CrossRefGoogle Scholar
  35. 35.
    Nicolakakis, N., and E. Hamel. Neurovascular function in Alzheimer’s disease patients and experimental models. J. Cereb. Blood Flow Metab. 31(6):1354–1370, 2011.PubMedCrossRefGoogle Scholar
  36. 36.
    Panerai, R. B. Cerebral autoregulation: from models to clinical applications. Cardiovasc. Eng. 8:42–59, 2008.PubMedCrossRefGoogle Scholar
  37. 37.
    Panerai, R. B. Transcranial Doppler for evaluation of cerebral autoregulation. Clin. Auton. Res. 2009. doi: 10.1007/s10286-009-0011-8.PubMedGoogle Scholar
  38. 38.
    Panerai, R. B., S. L. Dawson, and J. F. Potter. Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am. J. Physiol. 277:H1089–H1099, 1999.PubMedGoogle Scholar
  39. 39.
    Panerai, R. B., D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans. Multivariate dynamic analysis of cerebral blood flow regulation in humans. IEEE Trans. Biomed. Eng. 47:419–423, 2000.PubMedCrossRefGoogle Scholar
  40. 40.
    Paulson, O. B., S. Strandgaard, and L. Edvinsson. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 2:161–192, 1990.PubMedGoogle Scholar
  41. 41.
    Roher, A. E., Y. M. Kuo, C. Esh, C. Knebel, N. Weiss, W. Kalbach, D. C. Luehrs, J. L. Childress, T. G. Beach, R. O. Weller, and T. A. Kokjohn. Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol. Med. 9:112–122, 2003.PubMedGoogle Scholar
  42. 42.
    Schneider, J. A., R. S. Wilson, J. L. Bienias, D. A. Evans, and D. A. Bennett. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 62:1148–1155, 2004.PubMedCrossRefGoogle Scholar
  43. 43.
    Sellke, F. W., S. Seshadri, H. C. Chui, R. T. Higashida, R. Lindquist, P. M. Nilsson, G. C. Roman, R. C. Petersen, J. A. Schneider, C. Tzourio, D. K. Arnett, D. Bennett, C. Iadecola, L. J. Launer, S. Laurent, O. L. Lopez, D. Nyenhuis, P. B. Gorelick, A. Scuteri, S. E. Black, C. DeCarli, and S. M. Greenberg. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the AHA/ASA. Stroke 42(9):2672–2713, 2011.PubMedCrossRefGoogle Scholar
  44. 44.
    Silvestrini, M., P. Pasqualetti, R. Baruffaldi, M. Bartolini, Y. Handouk, M. Matteis, F. Moffa, L. Provinciali, and F. Vernieri. Cerebrovascular reactivity and cognitive decline in patients with Alzheimer’s disease. Stroke 37:1010–1015, 2006.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith, E. E., and S. M. Greenberg. Amyloid-beta, blood vessels and brain function. Stroke 40(7):2601–2606, 2009.PubMedCrossRefGoogle Scholar
  46. 46.
    Tantucci, C., P. Bottini, C. Fiorani, M. L. Dottorini, F. Santeusanio, L. Provinciali, C. A. Sorbini, and G. Casucci. Cerebrovascular reactivity and hypercapnic respiratory drive in diabetic autonomic neuropathy. J. Appl. Physiol. 90:889–896, 2001.PubMedGoogle Scholar
  47. 47.
    Tong, X. K., N. Nicolakakis, A. Kocharyan, and E. Hamel. Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer’s disease. J. Neurosci. 25(48):11165–11174, 2005.PubMedCrossRefGoogle Scholar
  48. 48.
    van Beek, A. H., J. A. Claassen, M. G. Rikkert, and R. W. Jansen. Cerebral autoregulation: overview of current concepts and methodology with special focus on the elderly. J. Cereb. Blood Flow Metab. 28:1071–1085, 2008.PubMedCrossRefGoogle Scholar
  49. 49.
    van Beek, A. H., J. Lagro, M. G. Olde-Rikkert, R. Zhang, and J. A. Claassen. Oscillations in cerebral blood flow and cortical oxygenation in Alzheimer’s disease. Neurobiol. Aging 33(2):428.e21–428.e31, 2012.CrossRefGoogle Scholar
  50. 50.
    Yaffe, K., E. Barrett-Connor, F. Lin, and D. Grady. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch. Neurol. 59:378–384, 2002.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang, R., J. H. Zuckerman, C. A. Giller, and B. D. Levine. Transfer function analysis of dynamic cerebral autoregulation in humans. Am. J. Physiol. 274:233–241, 1998.Google Scholar
  52. 52.
    Zhang, R., J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine. Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106:1814–1820, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • V. Z. Marmarelis
    • 1
    Email author
  • D. C. Shin
    • 1
  • M. E. Orme
    • 2
  • R. Zhang
    • 3
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.SonovationLos AngelesUSA
  3. 3.University of Texas, Southwestern Medical CenterDallasUSA

Personalised recommendations