# Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

## Abstract

The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm^{3} subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with *in vivo* trends observed recently in imaging studies within experimental tolerances and uncertainty.

## Keywords

Hemodynamics Oxygen perfusion Capillary morphometrics Microvasculature Cerebral vasculature## Notes

### Acknowledgments

The authors would like to gratefully acknowledge NIH for their financial support of this project, NIH-5R21EB004956. The project was also partially supported by NSF grants CBET-0756154 and CBET-1301198. No conflicts of interest were posed in the conduct of this research.

## References

- 1.Aroesty, J., and J. F. Gross. The mathematics of pulsatile flow in small vessels. I. Casson theory.
*Microvasc. Res.*4:1–12, 1972.CrossRefPubMedGoogle Scholar - 2.Behera, D. Textbook of Pulmonary Medicine. Jaypee Brothers Medical Pub, 2010.Google Scholar
- 3.Blinder, P., A. Y. Shih, C. Rafie, and D. Kleinfeld. Topological basis for the robust distribution of blood to rodent neocortex.
*Proc. Natl Acad. Sci. USA.*107:12670–12675, 2010.CrossRefPubMedPubMedCentralGoogle Scholar - 4.Boas, D. A., S. R. Jones, A. Devor, T. J. Huppert, and A. M. Dale. A vascular anatomical network model of the spatio-temporal response to brain activation.
*NeuroImage*40:1116–1129, 2008.CrossRefPubMedPubMedCentralGoogle Scholar - 5.Cassot, F., F. Lauwers, C. Fouard, S. Prohaska, and V. Lauwers-Cances. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex.
*Microcirculation*13:1–18, 2006.CrossRefPubMedGoogle Scholar - 6.Cassot, F., F. Lauwers, S. Lorthois, P. Puwanarajah, V. Cances-Lauwers, and H. Duvernoy. Branching patterns for arterioles and venules of the human cerebral cortex.
*Brain Res.*1313:62–78, 2010.CrossRefPubMedGoogle Scholar - 7.Cassot, F., F. Lauwers, S. Lorthois, P. Puwanarajah, and H. Duvernoy. Scaling laws for branching vessels of human cerebral cortex.
*Microcirculation*16:331–344, 2 p following 344, May 2009.Google Scholar - 8.Delaunay, B. Sur la sphere vide.
*Bull. Acad. Science USSR VII: Class Sci. Mat.,*pp. 793–800, 1934.Google Scholar - 9.Devor, A., S. Sakadzic, P. A. Saisan, M. A. Yaseen, E. Roussakis, V. J. Srinivasan, S. A. Vinogradov, B. R. Rosen, R. B. Buxton, A. M. Dale, and D. A. Boas. “Overshoot” of O(2) is required to maintain baseline tissue oxygenation at locations distal to blood vessels.
*J. Neurosci.*31:13676–13681, 2011.CrossRefPubMedPubMedCentralGoogle Scholar - 10.Duff, I. S., and J. K. Reid. The design of MA48: A code for the direct solution of sparse unsymmetric linear systems of equations.
*ACM Trans. Math. Softw.*22:187–226, 1996.CrossRefGoogle Scholar - 11.Duong, T. Q., and S. G. Kim. In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain.
*Magnetic Resonance in Medicine*43:393–402, 2000.CrossRefPubMedGoogle Scholar - 12.Duvernoy, H. M., S. Delon, and J. L. Vannson. Cortical blood vessels of the human brain.
*Brain Research Bulletin*7:519–579, 1981.CrossRefPubMedGoogle Scholar - 13.Espagno, J., L. Arbus, A. Bes, R. Billet, A. Gouaze, Ph. Frerebeau, Y. Lazorthes, G. Salamon, J. Seylaz, and B. Vlahovitch. La circulation cerebrale.
*Neuro*-*Chirurgie,*15, 1969.Google Scholar - 14.Fang, Q., S. Sakadzic, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A. Boas. Oxygen advection and diffusion in a three- dimensional vascular anatomical network.
*Optics Express*16:17530–17541, 2008.CrossRefPubMedPubMedCentralGoogle Scholar - 15.Fletcher, J. Mathematical modeling of the microcirculation.
*Mathematical Biosciences*38:159–202, 1978.CrossRefGoogle Scholar - 16.Fung, Y. C., and B. W. Zweifach. Microcirculation—mechanics of blood flow in capillaries.
*Annu. Rev. Fluid Mech.*3:189–&, 1971.Google Scholar - 17.Gjedde, A., H. Kuwabara, and A. M. Hakim. Reduction of functional capillary density in human brain after stroke.
*Journal of Cerebral Blood Flow and Metabolism*10:317–326, 1990.CrossRefPubMedGoogle Scholar - 18.Goldman, D., and A. S. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport.
*Journal of Theoretical Biology*206:181–194, 2000.CrossRefPubMedGoogle Scholar - 19.Gould, I. G., T. Marinnan, C. Maurice, M. Qader, B. Henry, M. Pervais, N. Vaicaitis, Y. Zhu, A. Rogers, and A. A. Linninger. Hemodynamics of cerebral vasculature. Presented at the Proceedings of the 11th International Symposium on Process Systems Engineering, Singapore, 2012.Google Scholar
- 20.Guibert, R., C. Fonta, and F. Plouraboue. Cerebral blood flow modeling in primate cortex.
*Journal of Cerebral Blood Flow and Metabolism*30:1860–1873, 2010.CrossRefPubMedPubMedCentralGoogle Scholar - 21.Guibert, R., C. Fonta, and F. Plouraboue. A new approach to model confined suspensions flows in complex networks: application to blood flow.
*Transport in Porous Media*83:171–194, 2010.CrossRefGoogle Scholar - 22.Guibert, R., C. Fonta, L. Risser, and F. Plouraboue. Coupling and robustness of intra-cortical vascular territories.
*NeuroImage*62:408–417, 2012.CrossRefPubMedGoogle Scholar - 23.Hill, A. V. The combinations of haemoglobin with oxygen and with carbon monoxide. I.
*Biochem J*7:471–480, 1913.CrossRefPubMedGoogle Scholar - 24.Hirsch, S., J. Reichold, M. Schneider, G. Szekely, and B. Weber. Topology and hemodynamics of the cortical cerebrovascular system.
*Journal of Cerebral Blood Flow and Metabolism*32:952–967, 2012.CrossRefPubMedPubMedCentralGoogle Scholar - 25.Hsu, R., and T. W. Secomb. A Green’s function method for analysis of oxygen delivery to tissue by microvascular networks.
*Mathematical Biosciences*96:61–78, 1989.CrossRefPubMedGoogle Scholar - 26.Hunziker, O., H. Frey, and U. Schulz. Morphometric investigations of capillaries in the brain cortex of the cat.
*Brain Research*65:1–11, 1974.CrossRefPubMedGoogle Scholar - 27.Huppert, T. J., M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas. A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation.
*Journal of Cerebral Blood Flow and Metabolism*27:1262–1279, 2007.CrossRefPubMedPubMedCentralGoogle Scholar - 28.Ito, H., I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography.
*Annals of Nuclear Medicine*15:111–116, 2001.CrossRefPubMedGoogle Scholar - 29.James, K. R., and W. Riha. Convergence criteria for successive overrelaxation.
*Siam Journal on Numerical Analysis*12:137–143, 1975.CrossRefGoogle Scholar - 30.Jensen, F. B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O
_{2}and CO_{2}transport.*Acta Physiologica Scandinavica*182:215–227, 2004.CrossRefPubMedGoogle Scholar - 31.Karch, R., F. Neumann, M. Neumann, and W. Schreiner. A three-dimensional model for arterial tree representation, generated by constrained constructive optimization.
*Computers in Biology and Medicine*29:19–38, 1999.CrossRefPubMedGoogle Scholar - 32.Karch, R., F. Neumann, M. Neumann, and W. Schreiner. Staged growth of optimized arterial model trees.
*Annals of Biomedical Engineering*28:495–511, 2000.CrossRefPubMedGoogle Scholar - 33.Karch, R., F. Neumann, B. K. Podesser, M. Neumann, P. Szawlowski, and W. Schreiner. Fractal properties of perfusion heterogeneity in optimized arterial trees: a model study.
*Journal of General Physiology*122:307–321, 2003.CrossRefPubMedPubMedCentralGoogle Scholar - 34.Kasischke, K. A., E. M. Lambert, B. Panepento, A. Sun, H. A. Gelbard, R. W. Burgess, T. H. Foster, and M. Nedergaard. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.
*Journal of Cerebral Blood Flow and Metabolism*31:68–81, 2011.CrossRefPubMedGoogle Scholar - 35.Keller, A. L., A. Schuz, N. K. Logothetis, and B. Weber. Vascularization of cytochrome oxidase-rich blobs in the primary visual cortex of squirrel and macaque monkeys.
*Journal of Neuroscience*31:1246–1253, 2011.CrossRefPubMedGoogle Scholar - 36.Kreuzer, F. Oxygen supply to tissues: the Krogh model and its assumptions.
*Experientia*38:1415–1426, 1982.CrossRefPubMedGoogle Scholar - 37.Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue.
*Journal of Physiology*52:409–415, 1919.CrossRefPubMedPubMedCentralGoogle Scholar - 38.Lauwers, F., F. Cassot, V. Lauwers-Cances, P. Puwanarajah, and H. Duvernoy. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles.
*NeuroImage*39:936–948, 2008.CrossRefPubMedGoogle Scholar - 39.Linninger, A. A. Biomedical systems research—New perspectives opened by quantitative medical imaging.
*Computers & Chemical Engineering*36:1–9, 2012.CrossRefGoogle Scholar - 40.Linninger, A. A., M. R. Somayaji, T. Erickson, X. Guo, and R. D. Penn. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue.
*Journal of Biomechanics*41:2176–2187, 2008.CrossRefPubMedGoogle Scholar - 41.Lipowsky, H. H. Microvascular rheology and hemodynamics.
*Microcirculation,*12:5–15, 2005.Google Scholar - 42.Lorthois, S., and F. Cassot. Fractal analysis of vascular networks: insights from morphogenesis.
*Journal of Theoretical Biology*262:614–633, 2010.CrossRefPubMedGoogle Scholar - 43.Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters.
*NeuroImage*54:2840–2853, 2011.CrossRefPubMedGoogle Scholar - 44.Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: part I: methodology and baseline flow.
*NeuroImage*54:1031–1042, 2011.CrossRefPubMedGoogle Scholar - 45.Mintun, M. A., B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data.
*Proc Natl Acad Sci U S A*98:6859–6864, 2001.CrossRefPubMedPubMedCentralGoogle Scholar - 46.Neubauer, J. A., and J. Sunderram. Oxygen-sensing neurons in the central nervous system.
*Journal of Applied Physiology*96:367–374, 2004.CrossRefPubMedGoogle Scholar - 47.Niimi, H., Y. Komai, S. Yamaguchi, and J. Seki. Microembolic flow disturbances in the cerebral microvasculature with an arcadal network: a numerical simulation.
*Clin Hemorheol Microcirc*34:247–255, 2006.PubMedGoogle Scholar - 48.Nishimura, N., C. B. Schaffer, B. Friedman, P. D. Lyden, and D. Kleinfeld. Penetrating arterioles are a bottleneck in the perfusion of neocortex.
*Proc Natl Acad Sci U S A*104:365–370, 2007.CrossRefPubMedGoogle Scholar - 49.Nolte, J., and J. W. Sundsten. The human brain: an introduction to its functional anatomy (5th ed.). St. Louis: Mosby, 2002.Google Scholar
- 50.Pawlik, G., A. Rackl, and R. J. Bing. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study.
*Brain Research*208:35–58, 1981.CrossRefPubMedGoogle Scholar - 51.Pries, A. Biophysical aspects of blood flow in the microvasculature.
*Cardiovascular Research*32:657–667, 1995.Google Scholar - 52.Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation.
*Circulation Research*67:826–834, 1990.CrossRefPubMedGoogle Scholar - 53.Rakusan, K., and P. Wicker. Morphometry of the small arteries and arterioles in the rat heart: effects of chronic hypertension and exercise.
*Cardiovascular Research*24:278–284, 1990.CrossRefPubMedGoogle Scholar - 54.Reichold, J., M. Stampanoni, A. Lena Keller, A. Buck, P. Jenny, and B. Weber. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks.
*J. Cereb. Blood Flow Metab.*29:1429–1443, 2009.Google Scholar - 55.Rhodin, J. A. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins.
*Journal of Ultrastructure Research*25:452–500, 1968.CrossRefPubMedGoogle Scholar - 56.Risser, L., F. Plouraboue, P. Cloetens, and C. Fonta. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level.
*International Journal of Developmental Neuroscience*27:185–196, 2009.CrossRefPubMedGoogle Scholar - 57.Risser, L., F. Plouraboue, A. Steyer, P. Cloetens, G. Le Duc, and C. Fonta. From homogeneous to fractal normal and tumorous microvascular networks in the brain.
*Journal of Cerebral Blood Flow and Metabolism*27:293–303, 2007.CrossRefPubMedGoogle Scholar - 58.Rostrup, E., I. Law, M. Blinkenberg, H. B. W. Larsson, A. P. Born, S. Holm, and O. B. Paulson. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study.
*NeuroImage*11:87–97, 2000.CrossRefPubMedGoogle Scholar - 59.Safaeian, N., M. Sellier, and T. David. A computational model of hemodynamic parameters in cortical capillary networks.
*J. Theor. Biol.*Dec 2 2010.Google Scholar - 60.Sakadzic, S., E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.
*Nature Methods*7:755–759, 2010.CrossRefPubMedPubMedCentralGoogle Scholar - 61.Schneider, M., S. Hirsch, B. Weber, and G. Szekely. Physiologically based construction of optimized 3-D arterial tree models.
*Med Image Comput Comput Assist Interv*14:404–411, 2011.PubMedGoogle Scholar - 62.Schneider, M., J. Reichold, B. Weber, G. Szekely, and S. Hirsch. Tissue metabolism driven arterial tree generation.
*Medical Image Analysis*16:1397–1414, 2012.CrossRefPubMedGoogle Scholar - 63.Schreiner, W., R. Karch, M. Neumann, F. Neumann, P. Szawlowski, and S. Roedler. Optimized arterial trees supplying hollow organs.
*Medical Engineering & Physics*28:416–429, 2006.CrossRefGoogle Scholar - 64.Sharan, M., E. P. Vovenko, A. Vadapalli, A. S. Popel, and R. N. Pittman. Experimental and theoretical studies of oxygen gradients in rat pial microvessels.
*Journal of Cerebral Blood Flow and Metabolism*28:1597–1604, 2008.CrossRefPubMedPubMedCentralGoogle Scholar - 65.Si, H. TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator, 1.4 ed. Berlin, 2006.Google Scholar
- 66.Sorenson, A., G., W. A. Copen, L. Ostergaard, F. S. Buonanno, R. G. Gonsalez, G. Rordorf, B. R. Rosen, L. H. Schwamm, R. M. Weisskoff, and W. J. Koroshetz. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time.
*Neuroradiology,*210, 519–527, 1999.Google Scholar - 67.Su, S. W., M. Catherall, and S. Payne. The influence of network structure on the transport of blood in the human cerebral microvasculature.
*Microcirculation*19:175–187, 2012.CrossRefPubMedGoogle Scholar - 68.Takahashi, T., T. Nagaoka, H. Yanagida, T. Saitoh, A. Kamiya, T. Hein, L. Kuo, and A. Yoshida. A mathematical model for the distribution of hemodynamic parameters in the human retinal microvasculature network.
*J Biorheol*23:77–86, 2009.CrossRefGoogle Scholar - 69.Tang, W., L. Zhang, A. Linninger, R. S. Tranter, and K. Brezinsky. Solving kinetic inversion problems via a physical trust region gauss-newton method.
*Industrial and Engineering Chemistry Research*44:3626–3637, 2005.CrossRefGoogle Scholar - 70.Tsai, P. S., J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels.
*Journal of Neuroscience*29:14553–14570, 2009.CrossRefPubMedPubMedCentralGoogle Scholar - 71.Vaičaitis, N. M., B. J. Sweetman, and A. A. Linninger. A computational model of cerebral vasculature, brain tissue, and cerebrospinal fluid. Presented at the 21st European Symposium on Computer-Aided Process Engineering, Greece, 2011.Google Scholar
- 72.Voronoi, G. Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs.
*Journal für die reine und angewandte Mathematik*134:198–287, 1908.Google Scholar - 73.Vovenko, E. Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats.
*Pflugers Archiv. European Journal of Physiology*437:617–623, 1999.CrossRefPubMedGoogle Scholar - 74.Vovenko, E. P., and A. E. Chuikin. Oxygen tension in rat cerebral cortex microvessels in acute anemia.
*Neuroscience and Behavioral Physiology*38:493–500, 2008.CrossRefPubMedGoogle Scholar - 75.Vovenko, E. P., and A. E. Chuikin. Tissue oxygen tension profiles close to brain arterioles and venules in the rat cerebral cortex during the development of acute anemia.
*Neuroscience and Behavioral Physiology*40:723–731, 2010.CrossRefPubMedGoogle Scholar - 76.Weber, B., A. L. Keller, J. Reichold, and N. K. Logothetis. The microvascular system of the striate and extrastriate visual cortex of the macaque.
*Cerebral Cortex*18:2318–2330, 2008.CrossRefPubMedGoogle Scholar - 77.Yang, Y., W. Engelien, S. Xu, H. Gu, D. A. Silbersweig, and E. Stern. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging.
*Magnetic Resonance in Medicine*44:680–685, 2000.CrossRefPubMedGoogle Scholar - 78.Zagzoule, M., and J. P. Marc-Vergnes. A global mathematical model of the cerebral circulation in man.
*Journal of Biomechanics*19:1015–1022, 1986.CrossRefPubMedGoogle Scholar - 79.Zhang, L. B., K. Kulkarni, M. R. Somayaji, M. Xenos, and A. A. Linninger. Discovery of transport and reaction properties in distributed systems.
*AIChE Journal*53:381–396, 2007.CrossRefGoogle Scholar - 80.Zhang, L. B., C. Xue, A. Malcolm, K. Kulkarni, and A. A. Linninger. Distributed system design under uncertainty.
*Industrial and Engineering Chemistry Research*45:8352–8360, 2006.CrossRefGoogle Scholar - 81.Zweifach, B. W. Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery.
*Circulation Research*34:843–857, 1974.CrossRefPubMedGoogle Scholar - 82.Zweifach, B. W., and H. H. Lipowsky. Quantitative studies of microcirculatory structure and function. III. Microvascular hemodynamics of cat mesentery and rabbit omentum.
*Circulation Research*41:380–390, 1977.CrossRefPubMedGoogle Scholar