Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 11, pp 2264–2284 | Cite as

Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

  • A. A. LinningerEmail author
  • I. G. Gould
  • T. Marinnan
  • C.-Y. Hsu
  • M. Chojecki
  • A. Alaraj
Article

Abstract

The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty.

Keywords

Hemodynamics Oxygen perfusion Capillary morphometrics Microvasculature Cerebral vasculature 

Notes

Acknowledgments

The authors would like to gratefully acknowledge NIH for their financial support of this project, NIH-5R21EB004956. The project was also partially supported by NSF grants CBET-0756154 and CBET-1301198. No conflicts of interest were posed in the conduct of this research.

References

  1. 1.
    Aroesty, J., and J. F. Gross. The mathematics of pulsatile flow in small vessels. I. Casson theory. Microvasc. Res. 4:1–12, 1972.CrossRefPubMedGoogle Scholar
  2. 2.
    Behera, D. Textbook of Pulmonary Medicine. Jaypee Brothers Medical Pub, 2010.Google Scholar
  3. 3.
    Blinder, P., A. Y. Shih, C. Rafie, and D. Kleinfeld. Topological basis for the robust distribution of blood to rodent neocortex. Proc. Natl Acad. Sci. USA. 107:12670–12675, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boas, D. A., S. R. Jones, A. Devor, T. J. Huppert, and A. M. Dale. A vascular anatomical network model of the spatio-temporal response to brain activation. NeuroImage 40:1116–1129, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cassot, F., F. Lauwers, C. Fouard, S. Prohaska, and V. Lauwers-Cances. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation 13:1–18, 2006.CrossRefPubMedGoogle Scholar
  6. 6.
    Cassot, F., F. Lauwers, S. Lorthois, P. Puwanarajah, V. Cances-Lauwers, and H. Duvernoy. Branching patterns for arterioles and venules of the human cerebral cortex. Brain Res. 1313:62–78, 2010.CrossRefPubMedGoogle Scholar
  7. 7.
    Cassot, F., F. Lauwers, S. Lorthois, P. Puwanarajah, and H. Duvernoy. Scaling laws for branching vessels of human cerebral cortex. Microcirculation 16:331–344, 2 p following 344, May 2009.Google Scholar
  8. 8.
    Delaunay, B. Sur la sphere vide. Bull. Acad. Science USSR VII: Class Sci. Mat., pp. 793–800, 1934.Google Scholar
  9. 9.
    Devor, A., S. Sakadzic, P. A. Saisan, M. A. Yaseen, E. Roussakis, V. J. Srinivasan, S. A. Vinogradov, B. R. Rosen, R. B. Buxton, A. M. Dale, and D. A. Boas. “Overshoot” of O(2) is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31:13676–13681, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Duff, I. S., and J. K. Reid. The design of MA48: A code for the direct solution of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22:187–226, 1996.CrossRefGoogle Scholar
  11. 11.
    Duong, T. Q., and S. G. Kim. In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain. Magnetic Resonance in Medicine 43:393–402, 2000.CrossRefPubMedGoogle Scholar
  12. 12.
    Duvernoy, H. M., S. Delon, and J. L. Vannson. Cortical blood vessels of the human brain. Brain Research Bulletin 7:519–579, 1981.CrossRefPubMedGoogle Scholar
  13. 13.
    Espagno, J., L. Arbus, A. Bes, R. Billet, A. Gouaze, Ph. Frerebeau, Y. Lazorthes, G. Salamon, J. Seylaz, and B. Vlahovitch. La circulation cerebrale. Neuro-Chirurgie, 15, 1969.Google Scholar
  14. 14.
    Fang, Q., S. Sakadzic, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A. Boas. Oxygen advection and diffusion in a three- dimensional vascular anatomical network. Optics Express 16:17530–17541, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fletcher, J. Mathematical modeling of the microcirculation. Mathematical Biosciences 38:159–202, 1978.CrossRefGoogle Scholar
  16. 16.
    Fung, Y. C., and B. W. Zweifach. Microcirculation—mechanics of blood flow in capillaries. Annu. Rev. Fluid Mech. 3:189–&, 1971.Google Scholar
  17. 17.
    Gjedde, A., H. Kuwabara, and A. M. Hakim. Reduction of functional capillary density in human brain after stroke. Journal of Cerebral Blood Flow and Metabolism 10:317–326, 1990.CrossRefPubMedGoogle Scholar
  18. 18.
    Goldman, D., and A. S. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. Journal of Theoretical Biology 206:181–194, 2000.CrossRefPubMedGoogle Scholar
  19. 19.
    Gould, I. G., T. Marinnan, C. Maurice, M. Qader, B. Henry, M. Pervais, N. Vaicaitis, Y. Zhu, A. Rogers, and A. A. Linninger. Hemodynamics of cerebral vasculature. Presented at the Proceedings of the 11th International Symposium on Process Systems Engineering, Singapore, 2012.Google Scholar
  20. 20.
    Guibert, R., C. Fonta, and F. Plouraboue. Cerebral blood flow modeling in primate cortex. Journal of Cerebral Blood Flow and Metabolism 30:1860–1873, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guibert, R., C. Fonta, and F. Plouraboue. A new approach to model confined suspensions flows in complex networks: application to blood flow. Transport in Porous Media 83:171–194, 2010.CrossRefGoogle Scholar
  22. 22.
    Guibert, R., C. Fonta, L. Risser, and F. Plouraboue. Coupling and robustness of intra-cortical vascular territories. NeuroImage 62:408–417, 2012.CrossRefPubMedGoogle Scholar
  23. 23.
    Hill, A. V. The combinations of haemoglobin with oxygen and with carbon monoxide. I. Biochem J 7:471–480, 1913.CrossRefPubMedGoogle Scholar
  24. 24.
    Hirsch, S., J. Reichold, M. Schneider, G. Szekely, and B. Weber. Topology and hemodynamics of the cortical cerebrovascular system. Journal of Cerebral Blood Flow and Metabolism 32:952–967, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hsu, R., and T. W. Secomb. A Green’s function method for analysis of oxygen delivery to tissue by microvascular networks. Mathematical Biosciences 96:61–78, 1989.CrossRefPubMedGoogle Scholar
  26. 26.
    Hunziker, O., H. Frey, and U. Schulz. Morphometric investigations of capillaries in the brain cortex of the cat. Brain Research 65:1–11, 1974.CrossRefPubMedGoogle Scholar
  27. 27.
    Huppert, T. J., M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas. A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation. Journal of Cerebral Blood Flow and Metabolism 27:1262–1279, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ito, H., I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Annals of Nuclear Medicine 15:111–116, 2001.CrossRefPubMedGoogle Scholar
  29. 29.
    James, K. R., and W. Riha. Convergence criteria for successive overrelaxation. Siam Journal on Numerical Analysis 12:137–143, 1975.CrossRefGoogle Scholar
  30. 30.
    Jensen, F. B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiologica Scandinavica 182:215–227, 2004.CrossRefPubMedGoogle Scholar
  31. 31.
    Karch, R., F. Neumann, M. Neumann, and W. Schreiner. A three-dimensional model for arterial tree representation, generated by constrained constructive optimization. Computers in Biology and Medicine 29:19–38, 1999.CrossRefPubMedGoogle Scholar
  32. 32.
    Karch, R., F. Neumann, M. Neumann, and W. Schreiner. Staged growth of optimized arterial model trees. Annals of Biomedical Engineering 28:495–511, 2000.CrossRefPubMedGoogle Scholar
  33. 33.
    Karch, R., F. Neumann, B. K. Podesser, M. Neumann, P. Szawlowski, and W. Schreiner. Fractal properties of perfusion heterogeneity in optimized arterial trees: a model study. Journal of General Physiology 122:307–321, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kasischke, K. A., E. M. Lambert, B. Panepento, A. Sun, H. A. Gelbard, R. W. Burgess, T. H. Foster, and M. Nedergaard. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. Journal of Cerebral Blood Flow and Metabolism 31:68–81, 2011.CrossRefPubMedGoogle Scholar
  35. 35.
    Keller, A. L., A. Schuz, N. K. Logothetis, and B. Weber. Vascularization of cytochrome oxidase-rich blobs in the primary visual cortex of squirrel and macaque monkeys. Journal of Neuroscience 31:1246–1253, 2011.CrossRefPubMedGoogle Scholar
  36. 36.
    Kreuzer, F. Oxygen supply to tissues: the Krogh model and its assumptions. Experientia 38:1415–1426, 1982.CrossRefPubMedGoogle Scholar
  37. 37.
    Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. Journal of Physiology 52:409–415, 1919.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lauwers, F., F. Cassot, V. Lauwers-Cances, P. Puwanarajah, and H. Duvernoy. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. NeuroImage 39:936–948, 2008.CrossRefPubMedGoogle Scholar
  39. 39.
    Linninger, A. A. Biomedical systems research—New perspectives opened by quantitative medical imaging. Computers & Chemical Engineering 36:1–9, 2012.CrossRefGoogle Scholar
  40. 40.
    Linninger, A. A., M. R. Somayaji, T. Erickson, X. Guo, and R. D. Penn. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. Journal of Biomechanics 41:2176–2187, 2008.CrossRefPubMedGoogle Scholar
  41. 41.
    Lipowsky, H. H. Microvascular rheology and hemodynamics. Microcirculation, 12:5–15, 2005.Google Scholar
  42. 42.
    Lorthois, S., and F. Cassot. Fractal analysis of vascular networks: insights from morphogenesis. Journal of Theoretical Biology 262:614–633, 2010.CrossRefPubMedGoogle Scholar
  43. 43.
    Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters. NeuroImage 54:2840–2853, 2011.CrossRefPubMedGoogle Scholar
  44. 44.
    Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: part I: methodology and baseline flow. NeuroImage 54:1031–1042, 2011.CrossRefPubMedGoogle Scholar
  45. 45.
    Mintun, M. A., B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 98:6859–6864, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Neubauer, J. A., and J. Sunderram. Oxygen-sensing neurons in the central nervous system. Journal of Applied Physiology 96:367–374, 2004.CrossRefPubMedGoogle Scholar
  47. 47.
    Niimi, H., Y. Komai, S. Yamaguchi, and J. Seki. Microembolic flow disturbances in the cerebral microvasculature with an arcadal network: a numerical simulation. Clin Hemorheol Microcirc 34:247–255, 2006.PubMedGoogle Scholar
  48. 48.
    Nishimura, N., C. B. Schaffer, B. Friedman, P. D. Lyden, and D. Kleinfeld. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A 104:365–370, 2007.CrossRefPubMedGoogle Scholar
  49. 49.
    Nolte, J., and J. W. Sundsten. The human brain: an introduction to its functional anatomy (5th ed.). St. Louis: Mosby, 2002.Google Scholar
  50. 50.
    Pawlik, G., A. Rackl, and R. J. Bing. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Research 208:35–58, 1981.CrossRefPubMedGoogle Scholar
  51. 51.
    Pries, A. Biophysical aspects of blood flow in the microvasculature. Cardiovascular Research 32:657–667, 1995.Google Scholar
  52. 52.
    Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation. Circulation Research 67:826–834, 1990.CrossRefPubMedGoogle Scholar
  53. 53.
    Rakusan, K., and P. Wicker. Morphometry of the small arteries and arterioles in the rat heart: effects of chronic hypertension and exercise. Cardiovascular Research 24:278–284, 1990.CrossRefPubMedGoogle Scholar
  54. 54.
    Reichold, J., M. Stampanoni, A. Lena Keller, A. Buck, P. Jenny, and B. Weber. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29:1429–1443, 2009.Google Scholar
  55. 55.
    Rhodin, J. A. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. Journal of Ultrastructure Research 25:452–500, 1968.CrossRefPubMedGoogle Scholar
  56. 56.
    Risser, L., F. Plouraboue, P. Cloetens, and C. Fonta. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. International Journal of Developmental Neuroscience 27:185–196, 2009.CrossRefPubMedGoogle Scholar
  57. 57.
    Risser, L., F. Plouraboue, A. Steyer, P. Cloetens, G. Le Duc, and C. Fonta. From homogeneous to fractal normal and tumorous microvascular networks in the brain. Journal of Cerebral Blood Flow and Metabolism 27:293–303, 2007.CrossRefPubMedGoogle Scholar
  58. 58.
    Rostrup, E., I. Law, M. Blinkenberg, H. B. W. Larsson, A. P. Born, S. Holm, and O. B. Paulson. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. NeuroImage 11:87–97, 2000.CrossRefPubMedGoogle Scholar
  59. 59.
    Safaeian, N., M. Sellier, and T. David. A computational model of hemodynamic parameters in cortical capillary networks. J. Theor. Biol. Dec 2 2010.Google Scholar
  60. 60.
    Sakadzic, S., E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nature Methods 7:755–759, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Schneider, M., S. Hirsch, B. Weber, and G. Szekely. Physiologically based construction of optimized 3-D arterial tree models. Med Image Comput Comput Assist Interv 14:404–411, 2011.PubMedGoogle Scholar
  62. 62.
    Schneider, M., J. Reichold, B. Weber, G. Szekely, and S. Hirsch. Tissue metabolism driven arterial tree generation. Medical Image Analysis 16:1397–1414, 2012.CrossRefPubMedGoogle Scholar
  63. 63.
    Schreiner, W., R. Karch, M. Neumann, F. Neumann, P. Szawlowski, and S. Roedler. Optimized arterial trees supplying hollow organs. Medical Engineering & Physics 28:416–429, 2006.CrossRefGoogle Scholar
  64. 64.
    Sharan, M., E. P. Vovenko, A. Vadapalli, A. S. Popel, and R. N. Pittman. Experimental and theoretical studies of oxygen gradients in rat pial microvessels. Journal of Cerebral Blood Flow and Metabolism 28:1597–1604, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Si, H. TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator, 1.4 ed. Berlin, 2006.Google Scholar
  66. 66.
    Sorenson, A., G., W. A. Copen, L. Ostergaard, F. S. Buonanno, R. G. Gonsalez, G. Rordorf, B. R. Rosen, L. H. Schwamm, R. M. Weisskoff, and W. J. Koroshetz. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Neuroradiology, 210, 519–527, 1999.Google Scholar
  67. 67.
    Su, S. W., M. Catherall, and S. Payne. The influence of network structure on the transport of blood in the human cerebral microvasculature. Microcirculation 19:175–187, 2012.CrossRefPubMedGoogle Scholar
  68. 68.
    Takahashi, T., T. Nagaoka, H. Yanagida, T. Saitoh, A. Kamiya, T. Hein, L. Kuo, and A. Yoshida. A mathematical model for the distribution of hemodynamic parameters in the human retinal microvasculature network. J Biorheol 23:77–86, 2009.CrossRefGoogle Scholar
  69. 69.
    Tang, W., L. Zhang, A. Linninger, R. S. Tranter, and K. Brezinsky. Solving kinetic inversion problems via a physical trust region gauss-newton method. Industrial and Engineering Chemistry Research 44:3626–3637, 2005.CrossRefGoogle Scholar
  70. 70.
    Tsai, P. S., J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. Journal of Neuroscience 29:14553–14570, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Vaičaitis, N. M., B. J. Sweetman, and A. A. Linninger. A computational model of cerebral vasculature, brain tissue, and cerebrospinal fluid. Presented at the 21st European Symposium on Computer-Aided Process Engineering, Greece, 2011.Google Scholar
  72. 72.
    Voronoi, G. Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik 134:198–287, 1908.Google Scholar
  73. 73.
    Vovenko, E. Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats. Pflugers Archiv. European Journal of Physiology 437:617–623, 1999.CrossRefPubMedGoogle Scholar
  74. 74.
    Vovenko, E. P., and A. E. Chuikin. Oxygen tension in rat cerebral cortex microvessels in acute anemia. Neuroscience and Behavioral Physiology 38:493–500, 2008.CrossRefPubMedGoogle Scholar
  75. 75.
    Vovenko, E. P., and A. E. Chuikin. Tissue oxygen tension profiles close to brain arterioles and venules in the rat cerebral cortex during the development of acute anemia. Neuroscience and Behavioral Physiology 40:723–731, 2010.CrossRefPubMedGoogle Scholar
  76. 76.
    Weber, B., A. L. Keller, J. Reichold, and N. K. Logothetis. The microvascular system of the striate and extrastriate visual cortex of the macaque. Cerebral Cortex 18:2318–2330, 2008.CrossRefPubMedGoogle Scholar
  77. 77.
    Yang, Y., W. Engelien, S. Xu, H. Gu, D. A. Silbersweig, and E. Stern. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magnetic Resonance in Medicine 44:680–685, 2000.CrossRefPubMedGoogle Scholar
  78. 78.
    Zagzoule, M., and J. P. Marc-Vergnes. A global mathematical model of the cerebral circulation in man. Journal of Biomechanics 19:1015–1022, 1986.CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang, L. B., K. Kulkarni, M. R. Somayaji, M. Xenos, and A. A. Linninger. Discovery of transport and reaction properties in distributed systems. AIChE Journal 53:381–396, 2007.CrossRefGoogle Scholar
  80. 80.
    Zhang, L. B., C. Xue, A. Malcolm, K. Kulkarni, and A. A. Linninger. Distributed system design under uncertainty. Industrial and Engineering Chemistry Research 45:8352–8360, 2006.CrossRefGoogle Scholar
  81. 81.
    Zweifach, B. W. Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circulation Research 34:843–857, 1974.CrossRefPubMedGoogle Scholar
  82. 82.
    Zweifach, B. W., and H. H. Lipowsky. Quantitative studies of microcirculatory structure and function. III. Microvascular hemodynamics of cat mesentery and rabbit omentum. Circulation Research 41:380–390, 1977.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • A. A. Linninger
    • 1
    Email author
  • I. G. Gould
    • 1
  • T. Marinnan
    • 2
  • C.-Y. Hsu
    • 1
  • M. Chojecki
    • 1
  • A. Alaraj
    • 3
  1. 1.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  3. 3.University of Illinois at Chicago, School of MedicineChicagoUSA

Personalised recommendations