Annals of Biomedical Engineering

, Volume 41, Issue 10, pp 2120–2129

High Sensitivity Micro-Elastometry: Applications in Blood Coagulopathy

  • Gongting Wu
  • Charles R. Krebs
  • Feng-Chang Lin
  • Alisa S. Wolberg
  • Amy L. Oldenburg


Highly sensitive methods for the assessment of clot structure can aid in our understanding of coagulation disorders and their risk factors. Rapid and simple clot diagnostic systems are also needed for directing treatment in a broad spectrum of cardiovascular diseases. Here we demonstrate a method for micro-elastometry, named resonant acoustic spectroscopy with optical vibrometry (RASOV), which measures the clot elastic modulus (CEM) from the intrinsic resonant frequency of a clot inside a microwell. We observed a high correlation between the CEM of human blood measured by RASOV and a commercial thromboelastograph (TEG), (R = 0.966). Unlike TEG, RASOV requires only 150 μL of sample and offers improved repeatability. Since CEM is known to primarily depend upon fibrin content and network structure, we investigated the CEM of purified clots formed with varying amounts of fibrinogen and thrombin. We found that RASOV was sensitive to changes of fibrinogen content (0.5–6 mg/mL), as well as to the amount of fibrinogen converted to fibrin during clot formation. We then simulated plasma hypercoagulability via hyperfibrinogenemia by spiking whole blood to 150 and 200% of normal fibrinogen levels, and subsequently found that RASOV could detect hyperfibrinogenemia-induced changes in CEM and distinguish these conditions from normal blood.


Elastometry Coagulation Thromboelastography Fibrin Thrombosis Acoustic spectroscopy Hyperfibrinogenemia 

Supplementary material

10439_2013_817_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)


  1. 1.
    Benkherourou, M., C. Rochas, P. Tracqui, L. Tranqui, and P. Y. Guméry. Standardization of a method for characterizing low-concentration biogels: elastic properties of low-concentration agarose gels. J. Biomech. Eng. 121:184–187, 1999.PubMedCrossRefGoogle Scholar
  2. 2.
    Brown, A. E. X., R. I. Litvinov, D. E. Discher, P. K. Purohit, and J. W. Weisel. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325:741–744, 2009.PubMedCrossRefGoogle Scholar
  3. 3.
    Carr, M. E., and S. L. Carr. Fibrin structure and concentration alter clot elastic modulus but do not alter platelet mediated force development. Blood Coagul. Fibrinolysis 6:79–86, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Carr, M. E., A. Krishnaswami, and E. J. Martin. Platelet contractile force (PCF) and clot elastic modulus (CEM) are elevated in diabetic patients with chest pain. Diabet. Med. 19:862–866, 2002.PubMedCrossRefGoogle Scholar
  5. 5.
    Clark, A. H., and S. B. Ross-Murphy. Structural and mechanical properties of biopolymer gels. Adv. Polym. Sci. 83:57–192, 1987.CrossRefGoogle Scholar
  6. 6.
    Collet, J.-P., H. Shuman, R. E. Ledger, S. Lee, and J. W. Weisel. The elasticity of an individual fibrin fiber in a clot. Proc. Natl. Acad. Sci. U. S. A. 102:9133–9137, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    De Willige, S. U., K. F. Standeven, H. Philippou, and R. A. S. Ariëns. The pleiotropic role of the fibrinogen gamma chain in hemostasis. Blood 114:3994–4001, 2009.CrossRefGoogle Scholar
  8. 8.
    Dempfle, C.-E., T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe. Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots. Blood Coagul. Fibrinolysis 19:765–770, 2008.PubMedCrossRefGoogle Scholar
  9. 9.
    Fatah, K., A. Silveira, P. Tornvall, F. Karpe, M. Blombäck, and A. Hamsten. Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb. Haemost. 76:535–540, 1996.PubMedGoogle Scholar
  10. 10.
    Gilliam, B. E., M. R. Reed, A. K. Chauhan, A. B. Dehlendorf, and T. L. Moore. Evidence of fibrinogen as a target of citrullination in IgM rheumatoid factor-positive polyarticular juvenile idiopathic arthritis. Pediatr. Rheumatol. 9:8, 2011.CrossRefGoogle Scholar
  11. 11.
    Hinghofer-Szalkay, H., and J. E. Greenleaf. Continuous monitoring of blood volume changes in humans. J. Appl. Physiol. 63:1003–1007, 1987.PubMedGoogle Scholar
  12. 12.
    International Commission on Radiation Units and Measurements (ICRU). Tissue substitutes in radiation dosimetry and measurement, Report 44. Bethesda, MD, 1989.Google Scholar
  13. 13.
    Luddington, R. J. Thrombelastography/thromboelastometry. Clin. Lab. Haematol. 27:81–90, 2005.PubMedCrossRefGoogle Scholar
  14. 14.
    Machlus, K. R., J. C. Cardenas, F. C. Church, and A. S. Wolberg. Causal relationship between hyperfibrinogenemia, thrombosis, and resistance to thrombolysis in mice. Blood 117:4953–4963, 2011.PubMedCrossRefGoogle Scholar
  15. 15.
    MacKintosh, F. C., J. Kas, and P. A. Janmey. Elasticity of semiflexible biopolymer network. Phys. Rev. Lett. 75:4425–4429, 1995.PubMedCrossRefGoogle Scholar
  16. 16.
    Nelb, G., G. Kamykowski, and J. Ferry. Rheology of fibrin clots. V. Shear modulus, creep, and creep recovery of fine unligated clots. Biophys. Chem. 13:15–23, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Oldenburg, A. L., and S. A. Boppart. Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography. Phys. Med. Biol. 55:1189–1201, 2010.PubMedCrossRefGoogle Scholar
  18. 18.
    Oldenburg, A. L., C. M. Gallippi, F. Tsui, T. C. Nichols, K. N. Beicker, R. K. Chettri, D. Spivak, A. Richardson, and T. H. Fischer. Magnetic and contrast properties of labeled platelets for magnetomotive optical coherence tomography. Biophys. J. 99:2374–2383, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Oldenburg, A. L., G. Wu, D. Spivak, F. Tsui, A. S. Wolberg, and H. Thomas. Imaging and elastometry of blood clots using magnetomotive optical coherence tomography and labeled platelets. IEEE J. Sel. Top. Quantum Electron. 18:1100–1109, 2012.CrossRefGoogle Scholar
  20. 20.
    Ryan, E. A., L. F. Mockros, J. W. Weisel, and L. Lorand. Structural origins of fibrin clot rheology. Biophys. J. 77:2813–2826, 1999.PubMedCrossRefGoogle Scholar
  21. 21.
    Scrutton, M. C., S. B. Ross-Murphy, G. M. Bennett, Y. Stirling, and T. W. Meade. Changes in clot deformability—a possible explanation for the epidemiological association between plasma fibrinogen concentration and myocardial infarction. Blood Coagul. Fibrinolysis 5:719–723, 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith, G. D., R. Harbord, J. Milton, S. Ebrahim, and J. A. C. Sterne. Does elevated plasma fibrinogen increase the risk of coronary heart disease? Evidence from a meta-analysis of genetic association studies. Arterioscler. Thromb. Vasc. Biol. 25:2228–2233, 2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Talens, S., F. W. G. Leebeek, J. A. A. Demmers, and D. C. Rijken. Identification of fibrin clot-bound plasma proteins. PLoS ONE 7:e41966, 2012.PubMedCrossRefGoogle Scholar
  24. 24.
    Weigandt, K. M., D. C. Pozzo, and L. Porcar. Structure of high density fibrin networks probed with neutron scattering and rheology. Soft Matter 5:4321, 2009.CrossRefGoogle Scholar
  25. 25.
    Weisel, J. Fibrinogen and fibrin. Adv. Protein Chem. 70:247–299, 2005.PubMedCrossRefGoogle Scholar
  26. 26.
    Whitten, C. W., and P. E. Greilich. Thromboelastography: past, present, and future. Anesthesiology 92:1223–1225, 2000.PubMedCrossRefGoogle Scholar
  27. 27.
    Wu, G., A. S. Wolberg, and A. L. Oldenburg. Validation study toward measuring the mechanical properties of blood clots using resonant acoustic spectroscopy with optical vibrometry. Proc. SPIE 8214:82140G, 2012.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Gongting Wu
    • 1
  • Charles R. Krebs
    • 2
  • Feng-Chang Lin
    • 3
  • Alisa S. Wolberg
    • 4
  • Amy L. Oldenburg
    • 1
    • 2
    • 5
  1. 1.Department of Physics and AstronomyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Biomedical EngineeringUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillUSA
  5. 5.Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations