Annals of Biomedical Engineering

, Volume 41, Issue 9, pp 1950–1956 | Cite as

Tubular Woven Narrow Fabrics for Replacement of Cruciate Ligaments

  • Yves-Simon Gloy
  • M. Loehrer
  • B. Lang
  • L. Rongen
  • T. Gries
  • S. Jockenhoevel


The human knee is one of the most frequently injured joints. More than half of these injuries are related to a failure of the anterior cruciate ligament. Current treatments (allogeneic and autologous) bear several disadvantages which can be overcome through the use of synthetic structures. Within the scope of this paper the potential of tubular woven fabrics for the use as artificial ligaments has been evaluated. Twelve fabrics made of polyethylene terephthalate and polytetrafluoroethylene were produced using shuttle weaving technology. Mechanical and biological properties of the fabrics were assessed using static tensile testing and cytotoxicity assays. The results obtained within this study show that woven tubular fabrics can be potentially used as artificial ligament structures as they can provide the desired medical and mechanical properties for cruciate ligament replacements. Through the choice of material and weaving parameters the fabrics’ tensile properties can imitate the stress–strain characteristic of the human cruciate ligament. Further assessments in terms of cyclic loading behavior and abrasion resistance of the material are needed to evaluate the success in long term implantation.


Weaving Textile Ligament Replacement 



We thank the Forschungsvereinigung Forschungskuratorium Textil e.V. for the financial support of the research project AiF-No. 16322 N („Wirkkantenfreie 3D-Bandgewebe – Entwicklung von Funktionsmodellen für die Medizintechnik“), which occurred in the program for the sponsorship of the „Industriellen Gemeinschaftsforschung (IGF)“ from funds of the Bundesministerium für Wirtschaft und Technologie (BMWi) through the Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V. (AiF).


  1. 1.
    Apel, R., U. Mommsen, V. Wening, K. H. Jungbluth, H. Arps, and I. G. Delling. Alloplastischer Ersatz des vorderen Kreuzbandes durch Polytetrafluoräthylenband. Unfallchirugie 12:291–294, 1986.CrossRefGoogle Scholar
  2. 2.
    Chaput, C., and N. Duval. The history of ligament substitutes. In: Ligaments and Ligamentoplasties, edited by L’. H. Yahia. Berlin: Springer-Verlag, 1997, pp. 145–165.Google Scholar
  3. 3.
    Claes, L. Biomechanische Eigenschaften humaner Bänder. In: Alloplastischer Bandersatz, edited by C. Burri, Ch. Herfarth, and M. Jäger. Bern: Huber, 1983, pp. 12–19.Google Scholar
  4. 4.
    Cruz, J., R. Fangueiro, and S. Rana. Mechanical behaviour of fibrous braided structures for ligament tissue reinforcements. In: Proceedings FiberMed11: International Conference on Fibrous Products in Medical and Health Care, 28–30 June 2011, Tampere, Finland, edited by P. Talvanmaa. Tampere: Tampere University of Technology, 2011, Paper: Cruz_paper.pdf.Google Scholar
  5. 5.
    Dauner, M. Erarbeitung der flechttechnologischen Grundlagen für eine Kreuzbandprothese. PhD Thesis, Stuttgart University, 1999.Google Scholar
  6. 6.
    DeHaven, K. Diagnosis of acute knee injuries with hemarthrosis. Am. J. Sports Med. 8:9–14, 1980.PubMedCrossRefGoogle Scholar
  7. 7.
    Dietrich, M., et al. Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation. Tissue Eng. C 19(3):216–226, 2013.CrossRefGoogle Scholar
  8. 8.
    Gloy, Y.-S., M. Loehrer, C. Rosiepen, and T. Gries. Selvedge free woven narrow fabrics for medical applications. In: Proceedings FiberMed11: International Conference on Fibrous Products in Medical and Health Care, 28–30 June 2011, Tampere, Finland, edited by P. Talvanmaa. Tampere: Tampere University of Technology, 2011, Paper: Gloy_paper.pdf.Google Scholar
  9. 9.
    Gloy, Y.-S., M. Loehrer, C. Rosiepen, and T. Gries. Narrow fabrics for anterior cruciate ligament replacement. In: Abstract Book/XXI International Conference on Sport Rehabilitation and Traumatology: Football Medicine Strategies for Knee Injuries, edited by G. S. Roi and S. Della Villa. Torigiano: Calzetti & Mariucci, 2012, pp. 155.Google Scholar
  10. 10.
    Guidoin, M.-F., Y. Marois, J. Bejui, N. Poddevin, M. W. King, and R. Guidoin. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 21:2461–2474, 2000.Google Scholar
  11. 11.
    Ha, S.-W., E. Wintermantel, and G. Maier. Biokompatible Polymere. In: Medizintechnik: Life Science Engineering, edited by E. Wintermantel and S.-W. Ha. 5. Aufl. Berlin: Springer-Verlag, 2009, pp. 219–276.Google Scholar
  12. 12.
    Jedda, H., S. B. Abdessalem, M. Ragoubi, and F. Sakli. Contribution to the optimisation of artificial ligament mechanical properties. J. Tex Inst. 99:273–280, 2008.CrossRefGoogle Scholar
  13. 13.
    Kuehn, T. Entwicklung eines alloplastischen Bandersatzes. Master Thesis, Technische Hochschule, Aachen, 1998.Google Scholar
  14. 14.
    Noyes, F. R., D. S. Matthews, P. A. Mooar, and E. S. Grood. The symptomatic anterior cruciate-deficient knee. II. The results of rehabilitation, activity modification and counselling on functional disability. J. Bone Jt. Surg. Am. 65:163–174, 1983.Google Scholar
  15. 15.
    Poddevin, N. M., W. King, and R. G. Guidoin. Failure mechanisms of anterior cruciate ligament protheses: in vitro wear study. J. Biomed. Mater. Res. 38:370–381, 1997.Google Scholar
  16. 16.
    Vascular implants. Medical Textiles Aug: 2–3, 2001.Google Scholar
  17. 17.
    Witzel, U. Consideration on the biomechanics of the knee joint with regard to ligament reconstruction, especially with a polyethylene-terephthalate alloplastic ligament (trevira ligament). In: Ligaments and Ligamentoplasties, edited by L’H. Yahia. Berlin: Springer-Verlag, 1997, pp. 227–243.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Yves-Simon Gloy
    • 1
  • M. Loehrer
    • 1
  • B. Lang
    • 1
  • L. Rongen
    • 2
  • T. Gries
    • 1
  • S. Jockenhoevel
    • 2
  1. 1.Institut für Textiltechnik der RWTH Aachen UniversityAachenGermany
  2. 2.Department of Applied Medical Engineering, Helmholtz Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations