Annals of Biomedical Engineering

, Volume 41, Issue 10, pp 2206–2214 | Cite as

Distribution of Blood–Brain Barrier Disruption in Primary Blast Injury

  • Stewart Yeoh
  • E. David Bell
  • Kenneth L. Monson


Traumatic brain injury (TBI) resulting from explosive-related blast overpressure is a topic at the forefront of neurotrauma research. Compromise of the blood–brain barrier (BBB) and other cerebral blood vessel dysfunction is commonly reported in both experimental and clinical studies on blast injury. This study used a rifle primer-driven shock tube to investigate cerebrovascular injury in rats exposed to low-impulse, pure primary blast at three levels of overpressure (145, 232, and 323 kPa) and with three survival times (acute, 24, and 48 h). BBB disruption was quantified immunohistochemically by measuring immunoglobulin G (IgG) extravasation with image analysis techniques. Pure primary blast generated small lesions scattered throughout the brain. The number and size of lesions increased with peak overpressure level, but no significant difference was seen between survival times. Despite laterally directed blast exposure, equal numbers of lesions were found in each hemisphere of the brain. These observations suggest that cerebrovascular injury due to primary blast is distinct from that associated with conventional TBI.


Traumatic brain injury Vascular dysfunction Immunohistology Brain lesion 



Funding for this research was provided by the Department of Defense (W81XWH-08-1-0295). The authors would like to acknowledge Jordan Walker and Louise Butler for assistance with tissue processing, imaging, and data analysis.

Conflict of interest

No conflicting financial interests exist.


  1. 1.
    Armonda, R. A., R. S. Bell, A. H. Vo, G. Ling, T. J. DeGraba, B. Crandall, J. Ecklund, and W. W. Campbell. Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery 59:1215–1225, 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Axelsson, H., H. Hjelmqvist, A. Medin, J. K. Persson, and A. Suneson. Physiological changes in pigs exposed to a blast wave from a detonating high-explosive charge. Mil. Med. 165:119–126, 2000.PubMedGoogle Scholar
  3. 3.
    Bass, C. R., M. B. Panzer, K. A. Rafaels, G. Wood, J. Shridharani, and B. Capehart. Brain injuries from blast. Ann. Biomed. Eng. 40:185–202, 2012.PubMedCrossRefGoogle Scholar
  4. 4.
    Bauman, R. A., G. S. Ling, L. Tong, A. Januszkiewicz, D. Agoston, N. Delanerolle, J. Kim, D. Ritzel, R. Bell, J. M. Ecklund, et al. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J. Neurotrauma 26:841–860, 2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Bolander, R., B. Mathie, C. Bir, D. Ritzel, and P. VandeVord. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann. Biomed. Eng. 39:2550–2559, 2011.PubMedCrossRefGoogle Scholar
  6. 6.
    Bowen, I. G., E. R. Fletcher, D. R. Richmond, F. G. Hirsch, and C. S. White. Biophysical mechanisms and scaling procedures applicable in assessing responses of the thorax energized by air-blast overpressures or by nonpenetrating missiles. Ann. N. Y. Acad. Sci. 152:122–146, 1968.PubMedCrossRefGoogle Scholar
  7. 7.
    Cavaglia, M., S. M. Dombrowski, J. Drazba, A. Vasanji, P. M. Bokesch, and D. Janigro. Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 910:81–93, 2001.PubMedCrossRefGoogle Scholar
  8. 8.
    Cernak, I., and L. J. Noble-Haeusslein. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab. 30:255–266, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Cernak, I., J. Savic, Z. Malicevic, G. Zunic, P. Radosevic, I. Ivanovic, and L. Davidovic. Involvement of the central nervous system in the general response to pulmonary blast injury. J. Trauma 40:100–104, 1996.CrossRefGoogle Scholar
  10. 10.
    Cernak, I., Z. Wang, J. Jiang, X. Bian, and J. Savic. Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J. Trauma 50:695–706, 2001.PubMedCrossRefGoogle Scholar
  11. 11.
    Chavko, M., T. Watanabe, S. Adeeb, J. Lankasky, S. T. Ahlers, and R. M. McCarron. Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J. Neurosci. Methods 195:61–66, 2011.PubMedCrossRefGoogle Scholar
  12. 12.
    Courtney, M. W., and A. C. Courtney. Note: a table-top blast driven shock tube. Rev. Sci. Instrum. 81:126103, 2010.PubMedCrossRefGoogle Scholar
  13. 13.
    Croll, S. D., R. M. Ransohoff, N. Cai, Q. Zhang, F. J. Martin, T. Wei, L. J. Kasselman, J. Kintner, A. J. Murphy, G. D. Yancopoulos, et al. VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp. Neurol. 187:388–402, 2004.PubMedCrossRefGoogle Scholar
  14. 14.
    Cullis, I. G. Blast waves and how they interact with structures. J. R. Army Med. Corps 147:16–26, 2001.PubMedCrossRefGoogle Scholar
  15. 15.
    Dal Cengio Leonardi, A., N. J. Keane, C. A. Bir, A. G. Ryan, L. Xu, and P. J. VandeVord. Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat. J. Biomech. 45:2595–2602, 2012.Google Scholar
  16. 16.
    DeWitt, D. S., and D. S. Prough. Blast-induced brain injury and posttraumatic hypotension and hypoxemia. J. Neurotrauma 26:877–887, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Elsayed, N. M. Toxicology of blast overpressure. Toxicology 121:1–15, 1997.PubMedCrossRefGoogle Scholar
  18. 18.
    Garman, R. H., L. W. Jenkins, R. C. Switzer, R. A. Bauman, L. C. Tong, P. V. Swauger, S. A. Parks, D. V. Ritzel, C. E. Dixon, R. S. B. Clark, et al. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J. Neurotrauma 28:947–959, 2011.PubMedCrossRefGoogle Scholar
  19. 19.
    Goldstein, L. E., A. M. Fisher, C. A. Tagge, X.-L. Zhang, L. Velisek, J. A. Sullivan, C. Upreti, J. M. Kracht, M. Ericsson, M. W. Wojnarowicz, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4:134ra160, 2012.Google Scholar
  20. 20.
    Graham, D. I. Neuropathology of head injury. In: Neurotrauma, edited by R. K. Nrayan, J. E. Wilberger, and J. T. Povlishock. New York: McGraw-Hill, 1996, pp. 43–59.Google Scholar
  21. 21.
    Klatzo, I. Blood–brain barrier and ischaemic brain oedema. Z. Kardiol. 76:67–69, 1987.PubMedGoogle Scholar
  22. 22.
    Long, J. B., T. L. Bentley, K. A. Wessner, C. Cerone, S. Sweeney, and R. A. Bauman. Blast overpressure in rats: recreating a battlefield injury in the laboratory. J. Neurotrauma 26:827–840, 2009.PubMedCrossRefGoogle Scholar
  23. 23.
    Lossinsky, A. S., and R. R. Shivers. Structural pathways for macromolecular and cellular transport across the blood–brain barrier during inflammatory conditions. Rev. Histol. Histopathol. 19:535–564, 2004.Google Scholar
  24. 24.
    Moss, W. C., M. J. King, and E. G. Blackman. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys. Rev. Lett. 103:108702, 2009.PubMedCrossRefGoogle Scholar
  25. 25.
    Mouritz, A. P. Ballistic impact and explosive blast resistance of stitched composites. Compos. B Eng. 32:431–439, 2001.CrossRefGoogle Scholar
  26. 26.
    Ohtake, M., S. Morino, T. Kaidoh, and T. Inoue. Three-dimensional structural changes in cerebral microvessels after transient focal cerebral ischemia in rats: scanning electron microscopic study of corrosion casts. Neuropathology 24:219–227, 2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Paxinos, G., and C. Watson. The rat brain in stereotaxic coordinates (4th ed.). San Diego: Academic Press, 1998.Google Scholar
  28. 28.
    Rafaels, K. A., C. R. Bass, M. B. Panzer, R. S. Salzar, W. A. Woods, S. H. Feldman, T. Walilko, R. W. Kent, B. P. Capehart, J. B. Foster, et al. Brain injury risk from primary blast. J. Trauma. Acute. Care. Surg. 73:895–901, 2012.PubMedCrossRefGoogle Scholar
  29. 29.
    Readnower, R. D., M. Chavko, S. Adeeb, M. D. Conroy, J. R. Pauly, R. M. McCarron, and P. G. Sullivan. Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J. Neurosci. Res. 88:3530–3539, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Reneer, D. V. Blast-induced brain injury influence of shockwave components. Lexington, KY: University of Kentucky, 2012.Google Scholar
  31. 31.
    Saljo, A., F. Arrhen, H. Bolouri, M. Mayorga, and A. Hamberger. Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure. J. Neurotrauma 25:1397–1406, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Svetlov, S. I., V. Prima, O. Glushakova, A. Svetlov, D. R. Kirk, H. Gutierrez, V. L. Serebruany, K. C. Curley, K. K. Wang, and R. L. Hayes. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to “composite” blast. Front. Neurol. 3:15, 2012.PubMedCrossRefGoogle Scholar
  33. 33.
    White, C. S. The scope of blast and shock biology and problem areas in relating physical and biological parameters. Ann. N. Y. Acad. Sci. 152:89–102, 1968.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Stewart Yeoh
    • 1
  • E. David Bell
    • 1
  • Kenneth L. Monson
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations