Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 6, pp 1208–1216 | Cite as

Automated Micropipette Aspiration of Single Cells

  • Ehsan Shojaei-Baghini
  • Yi Zheng
  • Yu SunEmail author
Article

Abstract

This paper presents a system for mechanically characterizing single cells using automated micropipette aspiration. Using vision-based control and position control, the system controls a micromanipulator, a motorized translation stage, and a custom-built pressure system to position a micropipette (4 μm opening) to approach a cell, form a seal, and aspirate the cell into the micropipette for quantifying the cell’s elastic and viscoelastic parameters as well as viscosity. Image processing algorithms were developed to provide controllers with real-time visual feedback and to accurately measure cell deformation behavior on line. Experiments on both solid-like and liquid-like cells demonstrated that the system is capable of efficiently performing single-cell micropipette aspiration and has low operator skill requirements.

Keywords

Robotic cell manipulation Visual servoing Biological cell characterization Micropipette aspiration Mechanical properties 

Notes

Acknowledgments

The authors thank John Nguyen for helpful discussions and thank Haijiao Liu and Prof. Craig Simmons for PAVIC cell preparation. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program.

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Supplementary material

10439_2013_791_MOESM1_ESM.docx (574 kb)
Supplementary material 1 (DOCX 573 kb)

Supplementary material 2 (MP4 11752 kb)

Supplementary material 3 (MP4 21422 kb)

References

  1. 1.
    An, S. S., B. Fabry, X. Trepat, N. Wang, and J. J. Fredberg. Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness? Am. J. Respir. Cell Mol. Biol. 35(1):55–64, 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2(11):715–725, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Cross, S. E., Y.-S. Jin, J. Rao, and J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2(12):780–783, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Dougherty, E. R., and R. A. Lotufo. Hands-on Morphological Image Processing. Bellingham, WA: SPIE, 2003.CrossRefGoogle Scholar
  5. 5.
    Evans, E., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56(1):151–160, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    Fabry, B., G. Maksym, J. Butler, M. Glogauer, D. Navajas, and J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett. 87(14):1–4, 2001.CrossRefGoogle Scholar
  7. 7.
    Hashimoto, K. A review on vision-based control of robot manipulators. Adv. Robotics 17(10):969–991, 2003.CrossRefGoogle Scholar
  8. 8.
    Haupt, B. J., A. E. Pelling, and M. A. Horton. Integrated confocal and scanning probe microscopy for biomedical research. Sci. World J. 6:1609–1618, 2006.CrossRefGoogle Scholar
  9. 9.
    Heinrich, V., and W. Rawicz. Automated, high-resolution micropipet aspiration reveals new insight into the physical properties of fluid membranes. Langmuir 21(5):1962–1971, 2005.PubMedCrossRefGoogle Scholar
  10. 10.
    Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33(1):15–22, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim, D.-H., P. K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11:203–233, 2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee, G. Y. H., and C. T. Lim. Biomechanics approaches to studying human diseases. Trends Biotechnol. 25(3):111–118, 2007.PubMedCrossRefGoogle Scholar
  13. 13.
    Leith, D. J., and W. E. Leithead. Survey of gain-scheduling analysis and design. Int. J. Control 73(11):1001–1025, 2000.CrossRefGoogle Scholar
  14. 14.
    Lewis, J. P. Fast normalized cross-correlation. Vis. Interface 10(1):120–123, 1995.Google Scholar
  15. 15.
    Lim, C. T., E. H. Zhou, A. Li, S. R. K. Vedula, and H. X. Fu. Experimental techniques for single cell and single molecule biomechanics. Mater. Sci. Eng. C 26(8):1278–1288, 2006.CrossRefGoogle Scholar
  16. 16.
    Lim, C. T., E. H. Zhou, and S. T. Quek. Mechanical models for living cells—a review. J. Biomech. 39:195–216, 2006.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu, X., Y. Wang, and Y. Sun. Cell contour tracking and data synchronization for real-time, high-accuracy micropipette aspiration. IEEE Trans. Autom. Sci. Eng. 6(3):536–543, 2009.CrossRefGoogle Scholar
  18. 18.
    Lu, Z., C. Moraes, G. Ye, C. A. Simmons, and Y. Sun. Single cell deposition and patterning with a robotic system. PLoS ONE 5(10):e13542, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Merryman, W. D., P. D. Bieniek, F. Guilak, and M. S. Sacks. Viscoelastic properties of the aortic valve interstitial cell. J. Biomech. Eng. 131:041005, 2009.PubMedCrossRefGoogle Scholar
  20. 20.
    Merryman, W. D., I. Youn, H. D. Lukoff, P. M. Krueger, F. Guilak, R. A. Hopkins, and M. S. Sacks. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 290(1):H224–H231, 2006.PubMedCrossRefGoogle Scholar
  21. 21.
    Mills, J. P., L. Qie, M. Dao, C. T. Lim, and S. Suresh. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1(3):169–180, 2004.PubMedGoogle Scholar
  22. 22.
    Needham, D., and R. M. Hochmuth. Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. J. Biomech. Eng. 112(3):269–276, 1990.PubMedCrossRefGoogle Scholar
  23. 23.
    Pravincumar, P., D. L. Bader, and M. M. Knight. Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure. PLoS ONE 7:e43938, 2012.PubMedCrossRefGoogle Scholar
  24. 24.
    Rugh, W. J., and J. S. Shamma. Research on gain scheduling. Automatica 36(10):1401–1425, 2000.CrossRefGoogle Scholar
  25. 25.
    Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112(3):263, 1990.PubMedCrossRefGoogle Scholar
  26. 26.
    Schreier, R., and G. C. Temes. Understanding Delta–Sigma Data Converters, Vol. 22. Piscataway, NJ: Wiley-IEEE Press, p. 464, 2005.Google Scholar
  27. 27.
    Shao, J. Y., and R. M. Hochmuth. The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 microns. Microcirculation 4(1):61–74, 1997.PubMedCrossRefGoogle Scholar
  28. 28.
    Simmons, C. A. Aortic valve mechanics: an emerging role for the endothelium. J. Am. Coll. Cardiol. 53(16):1456–1458, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3(4):413–438, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110(3):190–199, 1988.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsai, M. A., R. S. Frank, and R. E. Waugh. Passive mechanical behavior of human neutrophils: power-law fluid. Biophys. J. 65(5):2078–2088, 1993.PubMedCrossRefGoogle Scholar
  32. 32.
    Tsai, M. A., R. E. Waugh, and P. C. Keng. Cell cycle-dependence of HL-60 cell deformability. Biophys. J. 70(4):2023–2029, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  3. 3.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations