Annals of Biomedical Engineering

, Volume 41, Issue 6, pp 1233–1242 | Cite as

Resting EEG Discrimination of Early Stage Alzheimer’s Disease from Normal Aging Using Inter-Channel Coherence Network Graphs

  • Joseph McBride
  • Xiaopeng ZhaoEmail author
  • Nancy Munro
  • Charles Smith
  • Gregory Jicha
  • Yang Jiang


Amnestic mild cognitive impairment (MCI) is a degenerative neurological disorder at the early stage of Alzheimer’s disease (AD). This work is a pilot study aimed at developing a simple scalp-EEG-based method for screening and monitoring MCI and AD. Specifically, the use of graphical analysis of inter-channel coherence of resting EEG for the detection of MCI and AD at early stages is explored. Resting EEG records from 48 age-matched subjects (mean age 75.7 years)—15 normal controls (NC), 16 with early-stage MCI, and 17 with early-stage AD—are examined. Network graphs are constructed using pairwise inter-channel coherence measures for delta–theta, alpha, beta, and gamma band frequencies. Network features are computed and used in a support vector machine model to discriminate among the three groups. Leave-one-out cross-validation discrimination accuracies of 93.6% for MCI vs. NC (p < 0.0003), 93.8% for AD vs. NC (p < 0.0003), and 97.0% for MCI vs. AD (p < 0.0003) are achieved. These results suggest the potential for graphical analysis of resting EEG inter-channel coherence as an efficacious method for noninvasive screening for MCI and early AD.


EEG-based diagnosis Early Alzheimer’s disease Mild cognitive impairment Coherence Graphical analysis 



We thank A. Lawson, J. Howe, E. Walsh, J. Lianekhammy, S. Kaiser, C. Black, K. Tran, and L. Broster at UK for their assistance in data acquisition and database management. Research was sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy, and in part by the NSF under grant number CMMI-0845753; DOE OR-22725 to NM, NIH AG000986 to YJ, NCRRUL1RR033173 to UK CTS, P30AG028383 to UK Sanders-Brown Center on Aging.


  1. 1.
    Anoop, A., P. K. Singh, R. S. Jacob, and S. K. Maji. CSF biomarkers for Alzheimer’s disease diagnosis. Int. J. Alzheimer Dis. 1–12:2010, 2010.Google Scholar
  2. 2.
    Averbeck, B. B., and M. Seo. The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput. Biol. 4:e1000050, 2008.PubMedCrossRefGoogle Scholar
  3. 3.
    Bassett, D. S., and E. T. Bullmore. Small-world brain networks. Neuroscientist 12:512–523, 2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Bishop, C. M. Pre-processing and feature extraction. In: Neural Networks for Pattern Recognition. New York, NY: Oxford University Press, Inc., 2008, pp. 295–329.Google Scholar
  5. 5.
    Braitenberg, V., and A. Schüz. 1998. Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd ed., reviewed by L. Gary. Berlin: Springer, 1998, 249 pp.Google Scholar
  6. 6.
    Brenner, R. P., R. F. Ulrich, D. G. Spiker, R. J. Sclabassi, C. F. Reynolds, III, R. S. Marin, and F. Boller. Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalogr. Clin. Neurophysiol. 64:483–492, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Bullmore, E., and O. Sporns. Complex brain networks: theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186–198, 2009.PubMedCrossRefGoogle Scholar
  8. 8.
    Farrarini, L., I. M. Veer, E. Baerends, M. J. van Tol, R. J. Renken, N. J. van der Wee, D. J. Veltman, A. Aleman, F. G. Zitman, B. W. Penninx, M. A. van Buchem, J. H. Reiber, S. A. Rombouts, and J. Miles. Hierarchical functional modularity in the resting-state human brain. Hum. Brain Mapp. 30:2220–2231, 2009.CrossRefGoogle Scholar
  9. 9.
    Girvan, M., and M. E. J. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99:7821–7826, 2002.PubMedCrossRefGoogle Scholar
  10. 10.
    He, B. Neural signal processing. In: Neural Engineering. New York, NY: Kluwer Academic/Plenum Publishers, 2005, pp. 193–221.Google Scholar
  11. 11.
    Hellwig, B. A. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82:111–121, 2000.PubMedCrossRefGoogle Scholar
  12. 12.
    Jelic, V., S. E. Johansson, O. Almkvist, M. Shigeta, P. Julin, A. Nordberg, B. Winblad, and L. O. Wahlund. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol. Aging 21:533–540, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115:1490–1505, 2004.PubMedCrossRefGoogle Scholar
  14. 14.
    Meunier, D., S. Archard, A. Morcom, and E. Bullmore. Age-related changes in modular organization of human brain functional networks. Neuroimage 44:715–723, 2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Petersen, R. Mild Cognitive Impairment. New York, NY: Oxford Press, 288 pp., 2003.Google Scholar
  16. 16.
    Petersen, R. C., J. E. Parisi, D. W. Dickson, K. A. Johnson, D. S. Knopman, B. F. Boeve, G. A. Jicha, R. J. Ivnik, G. E. Smith, E. G. Tangalos, H. Braak, and E. Kokmen. Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 63:665–672, 2006.PubMedCrossRefGoogle Scholar
  17. 17.
    Reijneveld, J. C., S. C. Ponten, H. W. Berendse, and C. J. Stam. The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118:2317–2331, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Salvador, R., J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15:1332–1342, 2005.PubMedCrossRefGoogle Scholar
  19. 19.
    Signorino, M., E. Pucci, N. Belardinelli, G. Nolfe, and F. Angeleri. EEG spectral analysis in vascular and Alzheimer’s dementia. Electroencephalogr. Clin. Neurophysiol. 94:313–325, 1995.PubMedCrossRefGoogle Scholar
  20. 20.
    Snaedal, J., G. H. Johannesson, T. E. Gudmundsson, S. Gudmundsson, T. H. Pajdak, and K. Johnsen. The use of EEG in Alzheimer’s disease, with and without scopolamine—a pilot study. Clin. Neurophysiol. 121:836–841, 2010.PubMedCrossRefGoogle Scholar
  21. 21.
    Soininen, H., J. Partanen, V. Laulumaa, E. L. Helkala, M. Laakso, and P. J. Riekkinen. Longitudinal EEG spectral analysis in early stage of Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 72:290–297, 1989.PubMedCrossRefGoogle Scholar
  22. 22.
    Sporns, O., D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8:418–425, 2004.PubMedCrossRefGoogle Scholar
  23. 23.
    Stam, C. J., and J. C. Reijneveld. Graph theoretical analysis of complex of complex networks in the brain. Nonlinear Biomed. Phys. 1:3, 2007.PubMedCrossRefGoogle Scholar
  24. 24.
    Tononi, G., O. Sporns, and G. M. Edelman. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91:5033–5037, 1994.PubMedCrossRefGoogle Scholar
  25. 25.
    Waldemar, G., B. Dubois, M. Emre, J. Georges, I. G. McKeith, M. Rossor, P. Scheltens, P. Tariska, and B. Winbald. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur. J. Neurol. 14:e1–e26, 2007.PubMedCrossRefGoogle Scholar
  26. 26.
    Zetterberg, H., N. Mattson, and K. Blennow. Cerebrospinal fluid analysis should be considered in patients with cognitive problems. Int. J. Alzheimer Dis. 2010:163065, 2010.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Joseph McBride
    • 1
  • Xiaopeng Zhao
    • 1
    • 2
    Email author
  • Nancy Munro
    • 3
  • Charles Smith
    • 4
    • 6
  • Gregory Jicha
    • 4
    • 6
  • Yang Jiang
    • 5
    • 6
  1. 1.Department of Mechanical, Aerospace, and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.National Institute for Mathematical and Biological SynthesisUniversity of TennesseeKnoxvilleUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of NeurologyUniversity of KentuckyLexingtonUSA
  5. 5.Department of Behavioral ScienceUniversity of KentuckyLexingtonUSA
  6. 6.Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA

Personalised recommendations