Annals of Biomedical Engineering

, Volume 41, Issue 7, pp 1459–1477 | Cite as

The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment

  • Samarth S. Raut
  • Santanu Chandra
  • Judy Shum
  • Ender A. FinolEmail author


The current clinical management of abdominal aortic aneurysm (AAA) disease is based to a great extent on measuring the aneurysm maximum diameter to decide when timely intervention is required. Decades of clinical evidence show that aneurysm diameter is positively associated with the risk of rupture, but other parameters may also play a role in causing or predisposing the AAA to rupture. Geometric factors such as vessel tortuosity, intraluminal thrombus volume, and wall surface area are implicated in the differentiation of ruptured and unruptured AAAs. Biomechanical factors identified by means of computational modeling techniques, such as peak wall stress, have been positively correlated with rupture risk with a higher accuracy and sensitivity than maximum diameter alone. The objective of this review is to examine these factors, which are found to influence AAA disease progression, clinical management and rupture potential, as well as to highlight on-going research by our group in aneurysm modeling and rupture risk assessment.


Aneurysm Geometric modeling Biomechanics Rupture Finite element analysis Image segmentation 



The authors would like to acknowledge research funding from NIH Grants R21EB007651, R15HL087268, and R21EB008804. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We are also thankful to Dr. Satish Muluk of the Western Pennsylvania Allegheny Health System for his insightful discussions on clinical management of vascular disease and peri-operative AAA risk factors.


  1. 1.
    Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46:1097–1112, 2008.PubMedCrossRefGoogle Scholar
  2. 2.
    Ashton, J. H., J. P. V. Geest, B. R. Simon, and D. G. Haskett. Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J. Biomech. 42:197–201, 2009.PubMedCrossRefGoogle Scholar
  3. 3.
    Auer, M., and T. C. Gasser. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans. Med. Imaging 29:1022–1028, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Avril, S., F. Schneider, C. Boissier, and Z. Y. Li. In vivo velocity vector imaging and time-resolved strain rate measurements in the wall of blood vessels using MRI. J. Biomech. 44:979–983, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Baek, S., K. R. Rajagopal, and J. D. Humphrey. A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128:142–149, 2006.PubMedCrossRefGoogle Scholar
  6. 6.
    Bathe, K.-J. R. Finite Element Procedures. Englewood Cliffs: Prentice Hall, 1996.Google Scholar
  7. 7.
    Brown, L. C., D. Epstein, A. Manca, J. D. Beard, J. T. Powell, and R. M. Greenhalgh. The UK Endovascular Aneurysm Repair (EVAR) trials: design, methodology and progress. Eur. J. Vasc. Endovasc. Surg. 27:372–381, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Brown, L. C. and J. T. Powell. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann. Surg. 230:289–296, 1999; discussion 296-287.Google Scholar
  9. 9.
    Chaikof, E. L., D. C. Brewster, R. L. Dalman, M. S. Makaroun, K. A. Illig, G. A. Sicard, C. H. Timaran, G. R. Upchurch, Jr., F. J. Veith, and S. Society for Vascular. The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines. J. Vasc. Surg. 50:S2–S49, 2009.Google Scholar
  10. 10.
    Chandra, S., J. Rodriguez, and E. A. Finol. Methodology for the derivation of unloaded vascular geometry with hyperelastic isotropic tissue properties. J. Biomech. (submitted).Google Scholar
  11. 11.
    Chandra, S., S. S. Raut, A. Jana, R. Beiderman, M. Doyle, S. C. Muluk, and E. A. Finol. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient specific inflow conditions and fluid/solid coupling. J. Biomech. Eng. (submitted).Google Scholar
  12. 12.
    Choke, E., G. Cockerill, W. R. Wilson, S. Sayed, J. Dawson, I. Loftus, and M. M. Thompson. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 30:227–244, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Darling, R. C., C. R. Messina, D. C. Brewster, and L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56:II161–II164, 1977.Google Scholar
  14. 14.
    de Putter, S., B. J. Wolters, M. C. Rutten, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40:1081–1090, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Di Martino, E. S., A. Bohra, J. P. Vande Geest, N. Gupta, M. S. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006; discussion 576.Google Scholar
  16. 16.
    Di Martino, E. S., G. Guadagni, A. Fumero, G. Ballerini, R. Spirito, P. Biglioli, and A. Redaelli. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 23:647–655, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Di Martino, E., S. Mantero, F. Inzoli, G. Melissano, D. Astore, R. Chiesa, and R. Fumero. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur. J. Vasc. Endovasc. Surg. 15:290–299, 1998.PubMedCrossRefGoogle Scholar
  18. 18.
    Dobrin, P. B. Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg. Clin. N. Am. 69:687–703, 1989.PubMedGoogle Scholar
  19. 19.
    Doyle, B. J., D. S. Molony, M. T. Walsh, and T. M. McGloughlin. Abdominal Aortic Aneurysms: New Approaches to Rupture Risk Assessment. New York: Nova Science Publishers, 2010.Google Scholar
  20. 20.
    Doyle, B. J., A. Callanan, P. E. Burke, P. A. Grace, M. T. Walsh, D. A. Vorp, and T. M. McGloughlin. Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J. Vasc. Surg. 49:443–454, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Doyle, B. J., A. Callanan, and T. M. McGloughlin. A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. Biomed. Eng. Online 6:38, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Doyle, B. J., A. J. Cloonan, M. T. Walsh, D. A. Vorp, and T. M. McGloughlin. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43:1408–1416, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Doyle, B. J., P. A. Grace, E. G. Kavanagh, P. E. Burke, F. Wallis, M. T. Walsh, and T. M. McGloughlin. Improved assessment and treatment of abdominal aortic aneurysms: the use of 3D reconstructions as a surgical guidance tool in endovascular repair. Ir. J. Med. Sci. 178:321–328, 2009.PubMedCrossRefGoogle Scholar
  24. 24.
    Draney, M. T., R. J. Herfkens, T. J. Hughes, N. J. Pelc, K. L. Wedding, C. K. Zarins, and C. A. Taylor. Quantification of vessel wall cyclic strain using cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 30:1033–1045, 2002.PubMedCrossRefGoogle Scholar
  25. 25.
    Elger, D. F., D. M. Blackketter, R. S. Budwig, and K. H. Johansen. The influence of shape on the stresses in model abdominal aortic aneurysms. J. Biomech. Eng. 118:326–332, 1996.PubMedCrossRefGoogle Scholar
  26. 26.
    Erdemir, A., T. M. Guess, J. Halloran, S. C. Tadepalli, and T. M. Morrison. Considerations for reporting finite element analysis studies in biomechanics. J. Biomech. 45:625–633, 2012.PubMedCrossRefGoogle Scholar
  27. 27.
    Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003.PubMedCrossRefGoogle Scholar
  28. 28.
    Fillinger, M. F., J. Racusin, R. K. Baker, J. L. Cronenwett, A. Teutelink, M. L. Schermerhorn, R. M. Zwolak, R. J. Powell, D. B. Walsh, and E. M. Rzucidlo. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J. Vasc. Surg. 39:1243–1252, 2004.PubMedCrossRefGoogle Scholar
  29. 29.
    Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36:589–597, 2002.PubMedCrossRefGoogle Scholar
  30. 30.
    Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40:176–185, 2010.PubMedCrossRefGoogle Scholar
  31. 31.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Gee, M. W., C. Reeps, H. H. Eckstein, and W. A. Wall. Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42:1732–1739, 2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Georgakarakos, E., C. V. Ioannou, Y. Kamarianakis, Y. Papaharilaou, T. Kostas, E. Manousaki, and A. N. Katsamouris. The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur. J. Vasc. Endovasc. Surg. 39:42–48, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Georgakarakos, E., C. V. Ioannou, Y. Papaharilaou, T. Kostas, D. Tsetis, and A. N. Katsamouris. Peak wall stress does not necessarily predict the location of rupture in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 39:302–304, 2010.PubMedCrossRefGoogle Scholar
  35. 35.
    Georgakarakos, E., C. V. Ioannou, S. Volanis, Y. Papaharilaou, J. Ekaterinaris, and A. N. Katsamouris. The influence of intraluminal thrombus on abdominal aortic aneurysm wall stress. Int. Angiol. 28:325–333, 2009.PubMedGoogle Scholar
  36. 36.
    Giannoglou, G., G. Giannakoulas, J. Soulis, Y. Chatzizisis, T. Perdikides, N. Melas, G. Parcharidis, and G. Louridas. Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion. Angiology 57:487–494, 2006.PubMedCrossRefGoogle Scholar
  37. 37.
    Heng, M. S., M. J. Fagan, J. W. Collier, G. Desai, P. T. McCollum, and I. C. Chetter. Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J. Vasc. Surg. 47:17–22, 2008; discussion 22.Google Scholar
  38. 38.
    Hsu, M. C., and Y. Bazilevs. Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem. Anal. Des. 47:593–599, 2011.CrossRefGoogle Scholar
  39. 39.
    Inzoli, F., F. Boschetti, M. Zappa, T. Longo, and R. Fumero. Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg. 7:667–674, 1993.PubMedCrossRefGoogle Scholar
  40. 40.
    Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, and J. Swedenborg. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38:1283–1292, 2003.PubMedCrossRefGoogle Scholar
  41. 41.
    Khanafer, K. M., J. L. Bull, and R. Berguer. Fluid-structure interaction of turbulent pulsatile flow within a flexible wall axisymmetric aortic aneurysm model. Eur. J. Mech. B Fluid 28:88–102, 2009.CrossRefGoogle Scholar
  42. 42.
    Kim, Y. H., J. E. Kim, Y. Ito, A. M. Shih, B. Brott, and A. Anayiotos. Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework. Ann. Biomed. Eng. 36:1753–1763, 2008.PubMedCrossRefGoogle Scholar
  43. 43.
    Lederle, F. A., G. R. Johnson, S. E. Wilson, D. J. Ballard, W. D. Jordan, Jr., J. Blebea, F. N. Littooy, J. A. Freischlag, D. Bandyk, J. H. Rapp, A. A. Salam, and I. Veterans Affairs Cooperative Study. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA 287:2968–2972, 2002.Google Scholar
  44. 44.
    Leung, J. H., A. R. Wright, N. Cheshire, J. Crane, S. A. Thom, A. D. Hughes, and Y. Xu. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed. Eng. Online 5:33, 2006.PubMedCrossRefGoogle Scholar
  45. 45.
    Li, Z. Y., J. U-King-Im, T. Y. Tang, E. Soh, T. C. See, and J. H. Gillard. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J. Vasc. Surg. 47:928–935, 2008.PubMedCrossRefGoogle Scholar
  46. 46.
    Lu, J., X. Zhou, and M. L. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40:693–696, 2007.PubMedCrossRefGoogle Scholar
  47. 47.
    Ma, B., R. E. Harbaugh, and M. L. Raghavan. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32:264–273, 2004.PubMedCrossRefGoogle Scholar
  48. 48.
    Maier, A., M. W. Gee, C. Reeps, H. H. Eckstein, and W. A. Wall. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech. Model. Mechanobiol. 9:511–521, 2010.PubMedCrossRefGoogle Scholar
  49. 49.
    Maier, A., M. W. Gee, C. Reeps, J. Pongratz, H. H. Eckstein, and W. A. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.PubMedCrossRefGoogle Scholar
  50. 50.
    Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131:061015, 2009.PubMedCrossRefGoogle Scholar
  51. 51.
    McGloughlin, T. M., and B. J. Doyle. New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain. Arterioscler. Thromb. Vasc. Biol. 30:1687–1694, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Michel, J. B., J. L. Martin-Ventura, J. Egido, N. Sakalihasan, V. Treska, J. Lindholt, E. Allaire, U. Thorsteinsdottir, G. Cockerill, J. Swedenborg, and F. E. Consortium. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 90:18–27, 2011.PubMedCrossRefGoogle Scholar
  53. 53.
    Mizowaki, T., E. Sueyoshi, I. Sakamoto, and M. Uetani. Expansion rate of nonaneurysmatic abdominal aorta: over 10 years of follow-up CT studies. Comput. Med. Imaging Graph. 33:17–22, 2009.PubMedCrossRefGoogle Scholar
  54. 54.
    Morrison, T. M., G. Choi, C. K. Zarins, and C. A. Taylor. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J. Vasc. Surg. 49:1029–1036, 2009.PubMedCrossRefGoogle Scholar
  55. 55.
    Mower, W. R., L. J. Baraff, and J. Sneyd. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture. J. Surg. Res. 55:155–161, 1993.PubMedCrossRefGoogle Scholar
  56. 56.
    Mower, W. R., W. J. Quinones, and S. S. Gambhir. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J. Vasc. Surg. 26:602–608, 1997.PubMedCrossRefGoogle Scholar
  57. 57.
    Papaharilaou, Y., J. A. Ekaterinaris, E. Manousaki, and A. N. Katsamouris. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40:367–377, 2007.PubMedCrossRefGoogle Scholar
  58. 58.
    Pappu, S., A. Dardik, H. Tagare, and R. J. Gusberg. Beyond fusiform and saccular: a novel quantitative tortuosity index may help classify aneurysm shape and predict aneurysm rupture potential. Ann. Vasc. Surg. 22:88–97, 2008.PubMedCrossRefGoogle Scholar
  59. 59.
    Polzer, S., T. C. Gasser, J. Swedenborg, and J. Bursa. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 41:467–473, 2011.PubMedCrossRefGoogle Scholar
  60. 60.
    Raghavan, M. L., J. Kratzberg, E. M. Castro de Tolosa, M. M. Hanaoka, P. Walker, and E. S. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.Google Scholar
  61. 61.
    Raghavan, M. L., B. Ma, and M. F. Fillinger. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng. 34:1414–1419, 2006.PubMedCrossRefGoogle Scholar
  62. 62.
    Raghavan, M. L., B. Ma, and R. E. Harbaugh. Quantified aneurysm shape and rupture risk. J. Neurosurg. 102:355–362, 2005.PubMedCrossRefGoogle Scholar
  63. 63.
    Raghavan, D., M. VanLandingham, X. Gu, and T. Nguyen. Characterization of heterogeneous regions in polymer systems using tapping mode and force mode atomic force microscopy. Langmuir 16:9448–9459, 2000.CrossRefGoogle Scholar
  64. 64.
    Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.PubMedCrossRefGoogle Scholar
  65. 65.
    Raghavan, M. L., D. A. Vorp, M. P. Federle, M. S. Makaroun, and M. W. Webster. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31:760–769, 2000.PubMedCrossRefGoogle Scholar
  66. 66.
    Raut, S. S., A. Jana, and E. A. Finol. Evaluation of the effects of aneurysm geometry and vascular wall material properties on the AAA wall mechanics. J. Biomech. Eng. (submitted).Google Scholar
  67. 67.
    Raut, S. S., A. Jana, V. De Oliveira, S. C. Muluk, and E. A. Finol. The effect of regional variations in wall thickness on the abdominal aortic aneurysm biomechanics. J. Biomech. Eng. (submitted).Google Scholar
  68. 68.
    Raut, S. S. Patient-Specific 3D Vascular Reconstruction and Computational Assessment of Biomechanics—an Application to Abdominal Aortic Aneurysm. Ph.D. Thesis, Carnegie Mellon University, 2012.Google Scholar
  69. 69.
    Rissland, P., Y. Alemu, S. Einav, J. Ricotta, and D. Bluestein. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. J. Biomech. Eng. 131:031001, 2009.PubMedCrossRefGoogle Scholar
  70. 70.
    Rodriguez, J. F., G. Martufi, M. Doblare, and E. A. Finol. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann. Biomed. Eng. 37:2218–2221, 2009.PubMedCrossRefGoogle Scholar
  71. 71.
    Rodriguez, J. F., C. Ruiz, M. Doblare, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130:021023, 2008.PubMedCrossRefGoogle Scholar
  72. 72.
    Roy, J., F. Labruto, M. O. Beckman, J. Danielson, G. Johansson, and J. Swedenborg. Bleeding into the intraluminal thrombus in abdominal aortic aneurysms is associated with rupture. J. Vasc. Surg. 48:1108–1113, 2008.PubMedCrossRefGoogle Scholar
  73. 73.
    Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365:1577–1589, 2005.PubMedCrossRefGoogle Scholar
  74. 74.
    Scotti, C. M., and E. A. Finol. Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study. Comput. Struct. 85:1097–1113, 2007.CrossRefGoogle Scholar
  75. 75.
    Scotti, C. M., J. Jimenez, S. C. Muluk, and E. A. Finol. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput. Methods Biomech. Biomed. Eng. 11:301–322, 2008.CrossRefGoogle Scholar
  76. 76.
    Scotti, C. M., A. D. Shkolnik, S. C. Muluk, and E. A. Finol. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed. Eng. Online 4:64, 2005.PubMedCrossRefGoogle Scholar
  77. 77.
    Shum, J., E. S. DiMartino, A. Goldhamme, D. H. Goldman, L. C. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 37:638–648, 2010.PubMedCrossRefGoogle Scholar
  78. 78.
    Shum, J. Risk Assessment of Abdominal Aortic Aneurysms by Geometry Quantification Measures. PhD Thesis, Carnegie Mellon University, 2011.Google Scholar
  79. 79.
    Shum, J., G. Martufi, E. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39:277–286, 2011.PubMedCrossRefGoogle Scholar
  80. 80.
    Solberg, S., S. H. Forsdahl, K. Singh, and B. K. Jacobsen. Diameter of the infrarenal aorta as a risk factor for abdominal aortic aneurysm: the Tromso Study, 1994–2001. Eur. J. Vasc. Endovasc. Surg. 39:280–284, 2010.PubMedCrossRefGoogle Scholar
  81. 81.
    Somkantha, K. and P. Phuangsuwan. In: International Conference on Computer and Information Technology. Tokyo, Japan, 2009.Google Scholar
  82. 82.
    Speelman, L., A. Bohra, E. M. Bosboom, G. W. Schurink, F. N. van de Vosse, M. S. Makaorun, and D. A. Vorp. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J. Biomech. Eng. 129:105–109, 2007.PubMedCrossRefGoogle Scholar
  83. 83.
    Speelman, L., E. M. Bosboom, G. W. Schurink, J. Buth, M. Breeuwer, M. J. Jacobs, and F. N. van de Vosse. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J. Biomech. 42:1713–1719, 2009.PubMedCrossRefGoogle Scholar
  84. 84.
    Speelman, L., G. W. Schurink, E. M. Bosboom, J. Buth, M. Breeuwer, F. N. van de Vosse, and M. H. Jacobs. The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J. Vasc. Surg. 51:19–26, 2010.PubMedCrossRefGoogle Scholar
  85. 85.
    Stenbaek, J., B. Kalin, and J. Swedenborg. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 20:466–469, 2000.PubMedCrossRefGoogle Scholar
  86. 86.
    Stringfellow, M. M., P. F. Lawrence, and R. G. Stringfellow. The influence of aorta-aneurysm geometry upon stress in the aneurysm wall. J. Surg. Res. 42:425–433, 1987.PubMedCrossRefGoogle Scholar
  87. 87.
    Thompson, S. G., H. A. Ashton, L. Gao, R. A. Scott, and G. Multicentre Aneurysm Screening Study. Screening men for abdominal aortic aneurysm: 10 year mortality and cost effectiveness results from the randomised Multicentre Aneurysm Screening Study. BMJ 338:b2307, 2009.Google Scholar
  88. 88.
    Thubrikar, M. J., J. Al-Soudi, and F. Robicsek. Wall stress studies of abdominal aortic aneurysm in a clinical model. Ann. Vasc. Surg. 15:355–366, 2001.PubMedCrossRefGoogle Scholar
  89. 89.
    Thubrikar, M. J., F. Robicsek, M. Labrosse, V. Chervenkoff, and B. L. Fowler. Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J. Cardiovasc. Surg. (Torino) 44:67–77, 2003.Google Scholar
  90. 90.
    Tierney, A. P., A. Callanan, and T. M. McGloughlin. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk. J. Endovasc. Ther. 19:100–114, 2012.PubMedCrossRefGoogle Scholar
  91. 91.
    van Dam, E. A., S. D. Dams, G. W. Peters, M. C. Rutten, G. W. Schurink, J. Buth, and F. N. van de Vosse. Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech. Model. Mechanobiol. 7:127–137, 2008.PubMedCrossRefGoogle Scholar
  92. 92.
    Vande Geest, J. P., E. S. Di Martino, A. Bohra, M. S. Makaroun, and D. A. Vorp. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N. Y. Acad. Sci. 1085:11–21, 2006.PubMedCrossRefGoogle Scholar
  93. 93.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006.PubMedCrossRefGoogle Scholar
  94. 94.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39:2347–2354, 2006.PubMedCrossRefGoogle Scholar
  95. 95.
    Vande Geest, J. P., D. E. Schmidt, M. S. Sacks, and D. A. Vorp. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36:921–932, 2008.PubMedCrossRefGoogle Scholar
  96. 96.
    Vande Geest, J. P., D. H. Wang, S. R. Wisniewski, M. S. Makaroun, and D. A. Vorp. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34:1098–1106, 2006.PubMedCrossRefGoogle Scholar
  97. 97.
    Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28:168–176, 2004.PubMedGoogle Scholar
  98. 98.
    Vilalta, G., F. Nieto, C. Vaquero, J. A. Vilalta. Quantitative indicator of abdominal aortic aneurysm rupture risk based on its geometric parameter parameters. World Acad. Sci. Eng. Technol 181–185, 2010.Google Scholar
  99. 99.
    Volokh, K. Y. Comparison of biomechanical failure criteria for abdominal aortic aneurysm. J. Biomech. 43:2032–2034, 2010.PubMedCrossRefGoogle Scholar
  100. 100.
    Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40:1887–1902, 2007.PubMedCrossRefGoogle Scholar
  101. 101.
    Vorp, D. A., P. C. Lee, D. H. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa, and M. W. Webster. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2001.PubMedCrossRefGoogle Scholar
  102. 102.
    Vorp, D. A., M. L. Raghavan, and M. W. Webster. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J. Vasc. Surg. 27:632–639, 1998.PubMedCrossRefGoogle Scholar
  103. 103.
    Wang, D. H., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.PubMedCrossRefGoogle Scholar
  104. 104.
    Watton, P. N., and N. A. Hill. Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 8:25–42, 2009.PubMedCrossRefGoogle Scholar
  105. 105.
    Watton, P. N., N. A. Hill, and M. Heil. A mathematical model for the growth of the abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 3:98–113, 2004.PubMedCrossRefGoogle Scholar
  106. 106.
    Xenos, M., S. H. Rambhia, Y. Alemu, S. Einav, N. Labropoulos, A. Tassiopoulos, J. J. Ricotta, and D. Bluestein. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann. Biomed. Eng. 38:3323–3337, 2010.PubMedCrossRefGoogle Scholar
  107. 107.
    Zeinali-Davarani, S., J. Choi, and S. Baek. On parameter estimation for biaxial mechanical behavior of arteries. J. Biomech. 42:524–530, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Samarth S. Raut
    • 1
    • 2
  • Santanu Chandra
    • 2
  • Judy Shum
    • 3
  • Ender A. Finol
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Biomedical EngineeringThe University of Texas at San AntonioSan AntonioUSA
  3. 3.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations