Annals of Biomedical Engineering

, Volume 41, Issue 7, pp 1331–1346 | Cite as

Aortic Valve: Mechanical Environment and Mechanobiology

  • Sivakkumar Arjunon
  • Swetha Rathan
  • Hanjoong Jo
  • Ajit P. YoganathanEmail author


The aortic valve (AV) experiences a complex mechanical environment, which includes tension, flexure, pressure, and shear stress forces due to blood flow during each cardiac cycle. This mechanical environment regulates AV tissue structure by constantly renewing and remodeling the phenotype. In vitro, ex vivo and in vivo studies have shown that pathological states such as hypertension and congenital defect like bicuspid AV (BAV) can potentially alter the AV’s mechanical environment, triggering a cascade of remodeling, inflammation, and calcification activities in AV tissue. Alteration in mechanical environment is first sensed by the endothelium, which in turn induces changes in the extracellular matrix, and triggers cell differentiation and activation. However, the molecular mechanism of this process is not understood very well. Understanding these mechanisms is critical for advancing the development of effective medical based therapies. Recently, there have been some interesting studies on characterizing the hemodynamics associated with AV, especially in pathologies like BAV, using different experimental and numerical methods. Here, we review the current knowledge of the local AV mechanical environment and its effect on valve biology, focusing on in vitro and ex vivo approaches.


Aortic valve Mechanobiology Shear stress Pressure Stretch Bicuspid Calcification 



Authors wish to thank the Cardiovascular Fluid Mechanics Lab, Dr. Hanjoong Jo’s lab, Dr. Robert M. Nerem’s Lab members, and all other researchers for their contributions to the work presented in this paper. Authors also would like to thank all the relevant funding sources for the Cardiovascular Fluid Mechanics lab at Georgia Tech: American Heart Association under the Post-doctoral Research Awards (0625620B, 10POST3050054) and Pre-doctoral Research Award (09PRE2060605), National Science Foundation through the Engineering Research Center program at the Georgia Tech under the award EEC 9731643, National Heart, Lung and Blood Institute grant number HL-07262, the Wallace H. Coulter Distinguished Faculty Chair funds, Petit Undergraduate Research Scholars Program, a gift from Tom and Shirley Gurley, and all other sources. Finally, the authors acknowledge the kindness of Mr. Holifield for donating porcine heart valves, and thank the machine shop crew at School of Chemical and Biomolecular Engineering, Georgia Tech for machining the ex vivo bioreactors for some of the studies presented in this paper.


  1. 1.
    Ankeny, R. F. The Role of Bone Morphogenic Proteins in Human Aortic Valvular Endothelial Cells. Atlanta, GA: Georgia Institute of Technology, 2010.Google Scholar
  2. 2.
    Ankeny, R. F., V. H. Thourani, D. Weiss, J. D. Vega, W. R. Taylor, R. M. Nerem, et al. Preferential activation of SMAD1/5/8 on the fibrosa endothelium in calcified human aortic valves—association with low BMP antagonists and SMAD6. PLoS ONE 6(6):e20969, 2011.PubMedGoogle Scholar
  3. 3.
    Antonini-Canterin, F., G. Huang, E. Cervesato, P. Faggiano, D. Pavan, R. Piazza, et al. Symptomatic aortic stenosis: does systemic hypertension play an additional role? Hypertension 41(6):1268–1272, 2003.PubMedGoogle Scholar
  4. 4.
    Arjunon, S., S. Rathan, and A. Yoganathan. Design of a novel ex vivo bioreactor to investigate the effect of pressure induced stretch on aortic valve biology. In: QScience Proceedings: Heart Valve Biology and Tissue Engineering, Greece, 72, 2012.Google Scholar
  5. 5.
    Balachandran, K., M. A. Bakay, J. M. Connolly, X. Zhang, A. P. Yoganathan, R. J. Levy. Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann. Thorac. Surg. 92(1):147–153, 2011.Google Scholar
  6. 6.
    Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34(11):1655–1665, 2006.PubMedGoogle Scholar
  7. 7.
    Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. Heart Circ. Physiol. 296(3):H756–H764, 2009.PubMedGoogle Scholar
  8. 8.
    Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am. J. Pathol. 177(1):49–57, 2010.PubMedGoogle Scholar
  9. 9.
    Balachandran, K., P. Sucosky, and A. P. Yoganathan. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int. J. Inflamm. 2011:263870, 2011.Google Scholar
  10. 10.
    Barker, A. J., M. Markl, J. Bürk, R. Lorenz, J. Bock, S. Bauer, et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging. 5(4):457–466, 2012.PubMedGoogle Scholar
  11. 11.
    Barzilla, J. E., F. E. Acevedo, and K. J. Grande-Allen. Organ culture as a tool to identify early mechanisms of serotonergic valve disease. J. Heart Valve Dis. 19(5):626–635, 2010.PubMedGoogle Scholar
  12. 12.
    Barzilla, J. E., A. S. McKenney, A. E. Cowan, C. A. Durst, and K. J. Grande-Allen. Design and validation of a novel splashing bioreactor system for use in mitral valve organ culture. Ann. Biomed. Eng. 38(11):3280–3294, 2010.PubMedGoogle Scholar
  13. 13.
    Bellhouse, B., and F. Bellhouse. Fluid mechanics of model normal and stenosed aortic valves. Circ. Res. 25(6):693–704, 1969.PubMedGoogle Scholar
  14. 14.
    Bellhouse, B. J., and L. Talbot. The fluid mechanics of the aortic valve. J. Fluid Mech. Digit. Arch. 35(4):721–735, 1969.Google Scholar
  15. 15.
    Bischoff, J., and E. Aikawa. Progenitor cells confer plasticity to cardiac valve endothelium. J. Cardiovasc. Transl. Res. 4(6):710–719, 2011.PubMedGoogle Scholar
  16. 16.
    Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114(5):E84–E231, 2006.PubMedGoogle Scholar
  17. 17.
    Bouten, C. V. C., P. Y. W. Dankers, A. Driessen-Mol, S. Pedron, A. M. A. Brizard, and F. P. T. Baaijens. Substrates for cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 63(4–5):221–241, 2011.PubMedGoogle Scholar
  18. 18.
    Braddock, M., J.-L. Schwachtgen, P. Houston, M. C. Dickson, M. J. Lee, and C. J. Campbell. Fluid shear stress modulation of gene expression in endothelial cells. Physiology 13(5):241–246, 1998.Google Scholar
  19. 19.
    Brewer, R. J., R. M. Mentzer, Jr., J. D. Deck, R. C. Ritter, J. S. Trefil, and S. P. Nolan. An in vivo study of the dimensional changes of the aortic valve leaflets during the cardiac cycle. J. Thorac. Cardiovasc. Surg. 74(4):645–650, 1977.PubMedGoogle Scholar
  20. 20.
    Butcher, J. T., and R. M. Nerem. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 12(4):905–915, 2006.PubMedGoogle Scholar
  21. 21.
    Butcher, J. T., and R. M. Nerem. Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484):1445–1457, 2007.PubMedGoogle Scholar
  22. 22.
    Butcher, J. T., A. M. Penrod, A. J. Garcia, and R. M. Nerem. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler. Thromb. Vasc. Biol. 24(8):1429–1434, 2004.PubMedGoogle Scholar
  23. 23.
    Ceravolo, R., R. Maio, A. Pujia, A. Sciacqua, G. Ventura, M. C. Costa, et al. Pulse pressure and endothelial dysfunction in never-treated hypertensive patients. J. Am. Coll. Cardiol. 41(10):1753–1758, 2003.PubMedGoogle Scholar
  24. 24.
    Chandra, S., N. Rajamannan, and P. Sucosky. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model. Mechanobiol. 11(7):1085–1096, 2012.PubMedGoogle Scholar
  25. 25.
    Chiu, J.-. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91(1):327–387, 2011.PubMedGoogle Scholar
  26. 26.
    Christie, G. W., and B. G. Barratt-Boyes. Age-dependent changes in the radial stretch of human aortic valve leaflets determined by biaxial testing. Ann. Thorac. Surg. 60(2 Suppl):S156–S158; discussion S159, 1995.PubMedGoogle Scholar
  27. 27.
    Clark-Greuel, J. N., J. M. Connolly, E. Sorichillo, N. R. Narula, H. S. Rapoport, E. R. Mohler, 3rd, et al. Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann. Thorac. Surg. 83(3):946–953, 2007.PubMedGoogle Scholar
  28. 28.
    Cox, M. A. J., J. Kortsmit, N. Driessen, C. V. C. Bouten, and F. P. T. Baaijens. Tissue-engineered heart valves develop native-like collagen fiber architecture. Tissue Eng. Part A 16(5):1527–1537, 2010.PubMedGoogle Scholar
  29. 29.
    Custodis, F., S. H. Schirmer, M. Baumhakel, G. Heusch, M. Bohm, and U. Laufs. Vascular pathophysiology in response to increased heart rate. J. Am. Coll. Cardiol. 56(24):1973–1983, 2010.PubMedGoogle Scholar
  30. 30.
    Davies, P. F., A. G. Passerini, and C. A. Simmons. Aortic valve: turning over a new leaf(let) in endothelial phenotypic heterogeneity. Arterioscler. Thromb. Vasc. Biol. 24(8):1331–1333, 2004.PubMedGoogle Scholar
  31. 31.
    De Hart, J., F. P. Baaijens, G. W. Peters, and P. J. Schreurs. A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36(5):699–712, 2003.PubMedGoogle Scholar
  32. 32.
    Du, Y., and H. Yip. Effects of bone morphogenetic protein 2 on Id expression and neuroblastoma cell differentiation. Differentiation 79(2):84–92, 2010.PubMedGoogle Scholar
  33. 33.
    Einav, S., D. Stolero, J. M. Avidor, D. Elad, and L. Talbot. Wall shear stress distribution along the cusp of a tri-leaflet prosthetic valve. J. Biomed. Eng. 12(1):13–18, 1990.PubMedGoogle Scholar
  34. 34.
    Engelmayr, Jr., G. C., D. K. Hildebrand, F. W. Sutherland, J. E. Mayer, Jr., and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24(14):2523–2532, 2003.PubMedGoogle Scholar
  35. 35.
    Engelmayr, Jr., G. C., and M. S. Sacks. Prediction of extracellular matrix stiffness in engineered heart valve tissues based on nonwoven scaffolds. Biomech. Model. Mechanobiol. 7(4):309–321, 2008.PubMedGoogle Scholar
  36. 36.
    Fisher, C. I., J. Chen, and W. D. Merryman. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech. Model. Mechanobiol. 12(1):5–17, 2013.PubMedGoogle Scholar
  37. 37.
    Freeman, R. V., and C. M. Otto. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111(24):3316–3326, 2005.PubMedGoogle Scholar
  38. 38.
    Frishman, W. H., S. Huberfeld, S. Okin, Y. H. Wang, A. Kumar, and B. Shareef. Serotonin and serotonin antagonism in cardiovascular and non-cardiovascular disease. J. Clin. Pharmacol. 35(6):541–572, 1995.PubMedGoogle Scholar
  39. 39.
    Garg, V., A. N. Muth, J. F. Ransom, M. K. Schluterman, R. Barnes, I. N. King, et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274, 2005.PubMedGoogle Scholar
  40. 40.
    Ge, L., H. L. Leo, F. Sotiropoulos, and A. P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. 127(5):782–797, 2005.PubMedGoogle Scholar
  41. 41.
    Ge, L., and F. Sotiropoulos. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J. Biomech. Eng. 132(1):014505, 2010.PubMedGoogle Scholar
  42. 42.
    Gnyaneshwar, R., R. K. Kumar, and K. R. Balakrishnan. Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73(4):1122–1129, 2002.PubMedGoogle Scholar
  43. 43.
    Gould, R. A., K. Chin, T. P. Santisakultarm, A. Dropkin, J. M. Richards, C. B. Schaffer, et al. Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. Acta Biomater. 8(5):1710–1719, 2012.PubMedGoogle Scholar
  44. 44.
    Gupta, V., and K. J. Grande-Allen. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc. Res. 72(3):375–383, 2006.PubMedGoogle Scholar
  45. 45.
    Gustafsson, B. I., O. Hauso, I. Drozdov, M. Kidd, and I. M. Modlin. Carcinoid heart disease. Int. J. Cardiol. 129(3):318–324, 2008.PubMedGoogle Scholar
  46. 46.
    Haerten, K., G. Dohn, V. Dohn, L. Seipel, and F. Loogen. [Natural history of patients with severe aortic valve disease under medical therapy (author’s transl)]. Z. Kardiol. 69(11):757–762, 1980.PubMedGoogle Scholar
  47. 47.
    Helske, S., S. Syvaranta, K. A. Lindstedt, J. Lappalainen, K. Oorni, M. I. Mayranpaa, et al. Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 26(8):1791–1798, 2006.PubMedGoogle Scholar
  48. 48.
    Hishikawa, K., T. Nakaki, T. Marumo, M. Hayashi, H. Suzuki, R. Kato, et al. Pressure promotes DNA synthesis in rat cultured vascular smooth muscle cells. J. Clin. Investig. 93(5):1975–1980, 1994.PubMedGoogle Scholar
  49. 49.
    Hishikawa, K., T. Nakaki, T. Marumo, H. Suzuki, R. Kato, and T. Saruta. Pressure enhances endothelin-1 release from cultured human endothelial cells. Hypertension 25(3):449–452, 1995.PubMedGoogle Scholar
  50. 50.
    Hoehn, D., L. Sun, and P. Sucosky. Role of pathologic shear stress alterations in aortic valve endothelial activation. Cardiovasc. Eng. Technol. 1(2):165–178, 2010.Google Scholar
  51. 51.
    Holliday, C. J., R. F. Ankeny, H. Jo, and R. M. Nerem. Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 301(3):H856–H867, 2011.PubMedGoogle Scholar
  52. 52.
    Hope, M. D., T. A. Hope, A. K. Meadows, K. G. Ordovas, T. H. Urbania, M. T. Alley, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255(1):53–61, 2010.PubMedGoogle Scholar
  53. 53.
    Ishida, T., T. E. Peterson, N. L. Kovach, and B. C. Berk. MAP kinase activation by flow in endothelial cells: role of ß1 integrins and tyrosine kinases. Circ. Res. 79(2):310–316, 1996.PubMedGoogle Scholar
  54. 54.
    Jermihov, P. N., L. Jia, M. S. Sacks, R. C. Gorman, J. H. Gorman, 3rd, and K. B. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2(1):48–56, 2011.PubMedGoogle Scholar
  55. 55.
    Jian, B., J. Xu, J. Connolly, R. C. Savani, N. Narula, B. Liang, et al. Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am. J. Pathol. 161(6):2111–2121, 2002.PubMedGoogle Scholar
  56. 56.
    Jonathan Butcher, C. A. S., and J. N. Warnock. Mechanobiology of the aortic heart valve. J. Heart Valve Dis. 17(1):62–73, 2008.PubMedGoogle Scholar
  57. 57.
    Kai Szeto, P. P., V. Nigam, and J. Lasheras. Deformation of congenital bicuspid aortic valves in systole. In: DFD12 Meeting of The American Physical Society, San Diego, USA, 2012.Google Scholar
  58. 58.
    Konduri, S., Y. Xing, J. N. Warnock, Z. He, and A. P. Yoganathan. Normal physiological conditions maintain the biological characteristics of porcine aortic heart valves: an ex vivo organ culture study. Ann. Biomed. Eng. 33(9):1158–1166, 2005.PubMedGoogle Scholar
  59. 59.
    Kortsmit, J., N. J. B. Driessen, M. C. M. Rutten, and F. P. T. Baaijens. Real time, non-invasive assessment of leaflet deformation in heart valve tissue engineering. Ann. Biomed. Eng. 37(3):532–541, 2009.PubMedGoogle Scholar
  60. 60.
    Kortsmit, J., N. J. B. Driessen, M. C. M. Rutten, and F. P. T. Baaijens. Nondestructive and noninvasive assessment of mechanical properties in heart valve tissue engineering. Tissue Eng. Part A 15(4):797–806, 2009.PubMedGoogle Scholar
  61. 61.
    Ku, C. H., P. H. Johnson, P. Batten, P. Sarathchandra, R. C. Chambers, P. M. Taylor, et al. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res. 71(3):548–556, 2006.PubMedGoogle Scholar
  62. 62.
    Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107(4):341–347, 1985.PubMedGoogle Scholar
  63. 63.
    Lloyd-Jones, D., R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):E46–E215, 2010.PubMedGoogle Scholar
  64. 64.
    Maio, R., S. Miceli, A. Sciacqua, G. Leone, R. Bruni, P. Naccarato, et al. Heart rate affects endothelial function in essential hypertension. Intern. Emerg. Med., 2011. doi: 10.1007/s11739-011-0618-3.
  65. 65.
    Mazzag, B., and A. Barakat. The effect of noisy flow on endothelial cell mechanotransduction: a computational study. Ann. Biomed. Eng. 39(2):911–921, 2011.PubMedGoogle Scholar
  66. 66.
    Metzler, S. A., C. S. Digesu, J. I. Howard, S. D. Filip To, and J. N. Warnock. Live en face imaging of aortic valve leaflets under mechanical stress. Biomech. Model. Mechanobiol. 11(3–4):355–361, 2012.PubMedGoogle Scholar
  67. 67.
    Metzler, S. A., C. A. Pregonero, J. T. Butcher, S. C. Burgess, and J. N. Warnock. Cyclic strain regulates pro-inflammatory protein expression in porcine aortic valve endothelial cells. J. Heart Valve Dis. 17(5):571–577; discussion 578, 2008.PubMedGoogle Scholar
  68. 68.
    Miriyala, S., M. C. Gongora Nieto, C. Mingone, D. Smith, S. Dikalov, D. G. Harrison, et al. Bone morphogenic protein-4 induces hypertension in mice: role of noggin, vascular NADPH oxidases, and impaired vasorelaxation. Circulation 113(24):2818–2825, 2006.PubMedGoogle Scholar
  69. 69.
    Missirlis, Y. F., and M. Chong. Aortic valve mechanics—part I: material properties of natural porcine aortic valves. J. Bioeng. 2(3–4):287–300, 1978.PubMedGoogle Scholar
  70. 70.
    Mohler, 3rd, E. R. Mechanisms of aortic valve calcification. Am. J. Cardiol. 94(11):1396–1402, 2004; (A6).PubMedGoogle Scholar
  71. 71.
    Monzack, E. L., X. Gu, and K. S. Masters. Efficacy of simvastatin treatment of valvular interstitial cells varies with the extracellular environment. Arterioscler. Thromb. Vasc. Biol. 29(2):246–253, 2009.PubMedGoogle Scholar
  72. 72.
    Nandy, S., and M. J. Tarbell. Flush Mounted Hot Film Anemometer Measurement of Wall Shear Stress Distal to a Tri-Leaflet Valve for Newtonian and Non-Newtonian Blood Analog Fluids. Amsterdam: PAYS-BAS, IOS Press, 1987.Google Scholar
  73. 73.
    Nigam, V., and D. Srivastava. Notch1 represses osteogenic pathways in aortic valve cells. J. Mol. Cell. Cardiol. 47(6):828–834, 2009.PubMedGoogle Scholar
  74. 74.
    Nishimura, R. A. Cardiology patient pages. Aortic valve disease. Circulation 106(7):770–772, 2002.PubMedGoogle Scholar
  75. 75.
    Osman, L., A. H. Chester, M. Amrani, M. H. Yacoub, and R. T. Smolenski. A novel role of extracellular nucleotides in valve calcification: a potential target for atorvastatin. Circulation 114(1 Suppl):I566–I572, 2006.PubMedGoogle Scholar
  76. 76.
    Otto, C. M. Calcification of bicuspid aortic valves. Heart 88(4):321–322, 2002.PubMedGoogle Scholar
  77. 77.
    Otto, C. M., B. K. Lind, D. W. Kitzman, B. J. Gersh, and D. S. Siscovick. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N. Engl. J. Med. 341(3):142–147, 1999.PubMedGoogle Scholar
  78. 78.
    Padovani, A. M. S., M. F. Molina, and K. K. Mann. Inhibition of liver X receptor/retinoid X receptor-mediated transcription contributes to the proatherogenic effects of arsenic in macrophages in vitro. Arterioscler. Thromb. Vasc. Biol. 30(6):1228–1236, 2010.PubMedGoogle Scholar
  79. 79.
    Paolo Poggio, R. S., J. B. Grau, E. Branchetti, E. Lai, R. C. Gorman, J. H. Gorman III, J. E. Bavaria, M. S. Sacks, and G. Ferrari. Biomechanical Activation of Human Valvular Interstitial Cells from Early Stage of CAVD QScience Proceedings, 2012 (Heart Valve Biology and Tissue Engineering).Google Scholar
  80. 80.
    Pena-Silva, R. A., J. D. Miller, Y. Chu, and D. D. Heistad. Serotonin produces monoamine oxidase-dependent oxidative stress in human heart valves. Am. J. Physiol. Heart Circ. Physiol. 297(4):H1354–H1360, 2009.PubMedGoogle Scholar
  81. 81.
    Platt, M. O., Y. Xing, H. Jo, and A. P. Yoganathan. Cyclic pressure and shear stress regulate matrix metalloproteinases and cathepsin activity in porcine aortic valves. J. Heart Valve Dis. 15(5):622–629, 2006.PubMedGoogle Scholar
  82. 82.
    Ragaert, K., F. De Somer, P. Somers, I. De Baere, L. Cardon, and J. Degrieck. Flexural mechanical properties of porcine aortic heart valve leaflets. J. Mech. Behav. Biomed. Mater. 13:78–84, 2012.PubMedGoogle Scholar
  83. 83.
    Rajamannan, N. M., R. O. Bonow, and S. H. Rahimtoola. Calcific aortic stenosis: an update. Nat. Clin. Pract. Cardiovasc. Med. 4(5):254–262, 2007.PubMedGoogle Scholar
  84. 84.
    Reul, H., and N. Talukdar. Heart valve mechanics. In: Quantitative Cardiovascular Studies Clinical and Research Applications of Engineering Principles, edited by N. Hwang, D. Gross, and D. Patel. Baltimore, MD: University Park Press, 1979.Google Scholar
  85. 85.
    Roberts, W. C., and J. M. Ko. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111(7):920–925, 2005.PubMedGoogle Scholar
  86. 86.
    Robicsek, F., M. J. Thubrikar, J. W. Cook, and B. Fowler. The congenitally bicuspid aortic valve: how does it function? Why does it fail? Ann. Thorac. Surg. 77(1):177–185, 2004.PubMedGoogle Scholar
  87. 87.
    Robinson, P. S., and R. T. Tranquillo. Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets. Tissue Eng. Part A 15(10):2763–2772, 2009.PubMedGoogle Scholar
  88. 88.
    Rossvoll, O., S. Samstad, H. G. Torp, D. T. Linker, T. Skjaerpe, B. A. Angelsen, et al. The velocity distribution in the aortic anulus in normal subjects: a quantitative analysis of two-dimensional Doppler flow maps. J. Am. Soc. Echocardiogr. 4(4):367–378, 1991.PubMedGoogle Scholar
  89. 89.
    Sacks, M. S., W. David Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42(12):1804–1824, 2009.PubMedGoogle Scholar
  90. 90.
    Saikrishnan, N., C. H. Yap, N. C. Milligan, N. V. Vasilyev, and A. P. Yoganathan. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40(8):1760–1775, 2012.PubMedGoogle Scholar
  91. 91.
    Salloum, F. N., V. Q. Chau, N. N. Hoke, A. Abbate, A. Varma, R. A. Ockaili, et al. Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase G-dependent generation of hydrogen sulfide. Circulation 120(11 suppl 1):S31–S36, 2009.PubMedGoogle Scholar
  92. 92.
    Schenke-Layland, K., I. Riemann, F. Opitz, K. König, K. J. Halbhuber, and U. A. Stock. Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol. 23(2):113–125, 2004.PubMedGoogle Scholar
  93. 93.
    Simmons, C. A., G. R. Grant, E. Manduchi, and P. F. Davies. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ. Res. 96(7):792–799, 2005.PubMedGoogle Scholar
  94. 94.
    Simmons, C. A., J. Zilberberg, and P. F. Davies. A rapid, reliable method to isolate high quality endothelial RNA from small spatially-defined locations. Ann. Biomed. Eng. 32(10):1453–1459, 2004.PubMedGoogle Scholar
  95. 95.
    Smith, K. E., S. A. Metzler, and J. N. Warnock. Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells. Biomech. Model. Mechanobiol. 9(1):117–125, 2010.PubMedGoogle Scholar
  96. 96.
    Sorescu, G. P., H. Song, S. L. Tressel, J. Hwang, S. Dikalov, D. A. Smith, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res. 95(8):773–779, 2004.PubMedGoogle Scholar
  97. 97.
    Sorescu, G. P., M. Sykes, D. Weiss, M. O. Platt, A. Saha, J. Hwang, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J. Biol. Chem. 278(33):31128–31135, 2003.PubMedGoogle Scholar
  98. 98.
    Stella, J. A., and M. S. Sacks. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J. Biomech. Eng. 129(5):757–766, 2007.PubMedGoogle Scholar
  99. 99.
    Stevenson, D. M., A. P. Yoganathan, and F. P. Williams. Numerical simulation of steady turbulent flow through trileaflet aortic heart valves—II. Results on five models. J. Biomech. 18(12):909–926, 1985.PubMedGoogle Scholar
  100. 100.
    Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-{beta}1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29(2):254–260, 2009.PubMedGoogle Scholar
  101. 101.
    Sucosky, P., M. Padala, A. Elhammali, K. Balachandran, H. Jo, and A. P. Yoganathan. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J. Biomech. Eng. 130(3):035001, 2008.PubMedGoogle Scholar
  102. 102.
    Sun, L., S. Chandra, and P. Sucosky. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS ONE 7(10):e48843, 2012.PubMedGoogle Scholar
  103. 103.
    Sun, L., N. Rajamannan, and P. Sucosky. Design and validation of a novel bioreactor to subject aortic valve leaflets to side-specific shear stress. Ann. Biomed. Eng. 39(8):2174–2185, 2011.PubMedGoogle Scholar
  104. 104.
    Tadros, T. M., M. D. Klein, and O. M. Shapira. Ascending aortic dilatation associated with bicuspid aortic valve. Circulation 119(6):880–890, 2009.PubMedGoogle Scholar
  105. 105.
    Tan, W., D. Scott, D. Belchenko, H. J. Qi, and L. Xiao. Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells. Biomed. Microdevices 10(6):869–882, 2008.PubMedGoogle Scholar
  106. 106.
    Thayer, P., K. Balachandran, S. Rathan, C. Yap, S. Arjunon, H. Jo, et al. The effects of combined cyclic stretch and pressure on the aortic valve interstitial cell phenotype. Ann. Biomed. Eng. 39(6):1654–1667, 2011.PubMedGoogle Scholar
  107. 107.
    Thiene, G., and C. Basso. Pathology and pathogenesis of infective endocarditis in native heart valves. Cardiovasc. Pathol. 15(5):256–263, 2006.PubMedGoogle Scholar
  108. 108.
    Thubrikar, M. The Aortic Valve. Boca Raton, FL: CRC Press, 1990.Google Scholar
  109. 109.
    Thubrikar, M., L. P. Bosher, and S. P. Nolan. The mechanism of opening of the aortic valve. J. Thorac. Cardiovasc. Surg. 77(6):863–870, 1979.PubMedGoogle Scholar
  110. 110.
    Thubrikar, M. J., J. L. Heckman, and S. P. Nolan. High speed cine-radiographic study of aortic valve leaflet motion. J. Heart Valve Dis. 2(6):653–661, 1993.PubMedGoogle Scholar
  111. 111.
    Thubrikar, M. J., S. P. Nolan, J. Aouad, and J. D. Deck. Stress sharing between the sinus and leaflets of canine aortic valve. Ann. Thorac. Surg. 42(4):434–440, 1986.PubMedGoogle Scholar
  112. 112.
    Thubrikar, M., S. P. Nolan, L. P. Bosher, and J. D. Deck. The cyclic changes and structure of the base of the aortic valve. Am. Heart J. 99(2):217–224, 1980.PubMedGoogle Scholar
  113. 113.
    van Vlimmeren, M. A. A., A. Driessen-Mol, C. W. J. Oomens, and F. P. T. Baaijens. An in vitro model system to quantify stress generation, compaction, and retraction in engineered heart valve tissue. Tissue Eng. Part C 17(10):983–991, 2011.Google Scholar
  114. 114.
    Vouyouka, A. G., S. S. Salib, S. Cala, J. D. Marsh, and M. D. Basson. Chronic high pressure potentiates the antiproliferative effect and abolishes contractile phenotypic changes caused by endothelial cells in cocultured smooth muscle cells. J. Surg. Res. 110(2):344–351, 2003.PubMedGoogle Scholar
  115. 115.
    Warnock, J. N., S. C. Burgess, A. Shack, A. P. Yoganathan. Differential immediate-early gene responses to elevated pressure in porcine aortic valve interstitial cells. J. Heart Valve Dis. 15(1):34–41, 2006.Google Scholar
  116. 116.
    Warnock, J. N., S. Konduri, Z. He, and A. P. Yoganathan. Design of a sterile organ culture system for the ex vivo study of aortic heart valves. J. Biomech. Eng. 127(5):857–861, 2005.PubMedGoogle Scholar
  117. 117.
    Warnock, J. N., B. Nanduri, C. A. Pregonero Gamez, J. Tang, D. Koback, W. M. Muir, et al. Gene profiling of aortic valve interstitial cells under elevated pressure conditions: modulation of inflammatory gene networks. Int. J. Inflamm. 2011:176412, 2011.Google Scholar
  118. 118.
    Weinberg, E. J., and M. R. Kaazempur Mofrad. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41(16):3482–3487, 2008.PubMedGoogle Scholar
  119. 119.
    Weston, M., and A. Yoganathan. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann. Biomed. Eng. 29(9):752–763, 2001.PubMedGoogle Scholar
  120. 120.
    Wu, B., Y. Wang, W. Lui, M. Langworthy, K. L. Tompkins, A. K. Hatzopoulos, et al. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ. Res. 109:183–192, 2011.PubMedGoogle Scholar
  121. 121.
    Xing, Y. Effects of Mechanical Forces on the Biological Properties of Porcine Aortic Valve Leaflets. Georgia Institute of Technology, 2004.Google Scholar
  122. 119.
    Xing, Y., Z. He, J. N. Warnock, S. L. Hilbert, and A. P. Yoganathan. Effects of constant static pressure on the biological properties of porcine aortic valve leaflets. Ann. Biomed. Eng. 32(4):555–562, 2004.PubMedGoogle Scholar
  123. 123.
    Xing, Y., J. N. Warnock, Z. He, S. L. Hilbert, and A. P. Yoganathan. Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude and frequency dependent manner. Ann. Biomed. Eng. 32(11):1461–1470, 2004.PubMedGoogle Scholar
  124. 124.
    Yacoub, M. H., and J. J. M. Takkenberg. Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2(2):60–61, 2005.PubMedGoogle Scholar
  125. 125.
    Yap, C. H., H. S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am. J. Physiol. Heart Circ. Physiol. 298(2):H395–H405, 2010.PubMedGoogle Scholar
  126. 126.
    Yap, C. H., N. Saikrishnan, G. Tamilselvan, N. Vasilyev, and A. P. Yoganathan. The congenital bicuspid aortic valve can experience high-frequency unsteady shear stresses on its leaflet surface. Am. J. Physiol. Heart Circ. Physiol. 303(6):H721–H731, 2012.PubMedGoogle Scholar
  127. 127.
    Yap, C., N. Saikrishnan, G. Tamilselvan, and A. Yoganathan. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech. Model. Mechanobiol. 11:171–182, 2012.PubMedGoogle Scholar
  128. 128.
    Yap, C., N. Saikrishnan, and A. Yoganathan. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech. Model. Mechanobiol. 11:231–244, 2012.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Sivakkumar Arjunon
    • 1
  • Swetha Rathan
    • 2
  • Hanjoong Jo
    • 1
    • 3
  • Ajit P. Yoganathan
    • 1
    • 2
    Email author
  1. 1.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Division of Cardiology, Department of MedicineEmory UniversityAtlantaUSA

Personalised recommendations