Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 6, pp 1297–1307 | Cite as

Simulation of Intrathrombus Fluid and Solute Transport Using In Vivo Clot Structures with Single Platelet Resolution

  • Roman S. Voronov
  • Timothy J. Stalker
  • Lawrence F. Brass
  • Scott L. DiamondEmail author
Article

Abstract

The mouse laser injury thrombosis model provides up to 0.22 μm-resolved voxel information about the pore architecture of the dense inner core and loose outer shell regions of an in vivo arterial thrombus. Computational studies were conducted on this 3D structure to quantify transport within and around the clot: Lattice Boltzmann method defined vessel hemodynamics, while passive Lagrangian Scalar Tracking with Brownian motion contribution simulated diffusive-convective transport of various inert solutes (released from lumen or the injured wall). For an input average lumen blood velocity of 0.478 cm/s (measured by Doppler velocimetry), a 0.2 mm/s mean flow rate was obtained within the thrombus structure, most of which occurred in the 100-fold more permeable outer shell region (calculated permeability of the inner core was 10−11 cm2). Average wall shear stresses were 80–100 dyne/cm2 (peak values >200 dyne/cm2) on the outer rough surface of the thrombus. Within the thrombus, small molecule tracers (0.1 kDa) experienced ~70,000 collisions/s and penetrated/exited it in about 1 s, whereas proteins (~50 kDa) had ~9000 collisions/s and required about 10 s (tortuosity ~2–2.5). These simulations help define physical processes during thrombosis and constraints for drug delivery to the thrombus.

Keywords

Blood Lattice Boltzmann Confocal microscopy Brownian Diffusion Permeability Stresses Drug delivery Computation Modeling 

Notes

Acknowledgments

We acknowledge financial support from NIH R01-HL103419 and AHA 11POST6890012 grants. Computation was carried under TERAGRID supercomputing allocation TG-IBN110004 on the Lonestar linux cluster (Texas Advanced Computing Center). We would also like to acknowledge Dr. Papavassiliou’s Computational Transport Processes Laboratory at the University of Oklahoma, since a considerable portion of the code used in this study was written as a part of a PhD dissertation there. Finally, we would like to thank Dr. Henry J. Neeman, Dr. Raghu Reddy, and the whole OU Supercomputing Center for Education & Research (OSCER) team for useful discussions and suggestions.

Supplementary material

10439_2013_764_MOESM1_ESM.pdf (1010 kb)
Supplementary material 1 (PDF 1010 kb)

References

  1. 1.
    Agard, D. A., Y. Hiraoka, P. Shaw, and J. W. Sedat. Fluorescence microscopy in 3 dimensions. Methods Cell Biol. 30:353–377, 1989.PubMedCrossRefGoogle Scholar
  2. 2.
    Barber, C. B., D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4):469–483, 1996.CrossRefGoogle Scholar
  3. 3.
    Bellido-Martin, L., V. Chen, R. Jasuja, B. Furie, and B. C. Furie. Imaging fibrin formation and platelet and endothelial cell activation in vivo. Thromb. Haemost. 105(5):776–782, 2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Bhatnagar, P. L., E. P. Gross, and M. Krook. A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3):511–525, 1954.CrossRefGoogle Scholar
  5. 5.
    Borders, J. L., and H. J. Granger. An optical Doppler intravital velocimeter. Microvasc. Res. 27(1):117–127, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Boyd, J., J. Buick, and S. Green. A second-order accurate lattice Boltzmann non-Newtonian flow model. J. Phys. A 39(46):14241–14247, 2006.CrossRefGoogle Scholar
  7. 7.
    Brass, L. F., K. M. Wannemacher, P. Ma, and T. J. Stalker. Regulating thrombus growth and stability to achieve an optimal response to injury. J. Thromb. Haemost. 9(s1):66–75, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Brinkman, H. C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1(1):27–34, 1947.CrossRefGoogle Scholar
  9. 9.
    Chen, S., and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30:329–364, 1998.CrossRefGoogle Scholar
  10. 10.
    Colace, T., E. Falls, X. L. Zheng, and S. L. Diamond. Analysis of morphology of platelet aggregates formed on collagen under laminar blood flow. Ann. Biomed. Eng. 39(2):922–929, 2011.PubMedCrossRefGoogle Scholar
  11. 11.
    Comerford, A., M. J. Plank, and T. David. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J. Biomech. Eng. Trans. ASME 130(1):011010, 2008.CrossRefGoogle Scholar
  12. 12.
    Cosgrove, J. A., J. M. Buick, S. J. Tonge, C. G. Munro, C. A. Greated, and D. M. Campbell. Application of the Lattice Boltzmann method to transition in oscillatory channel flow. J. Phys. A 36(10):2609–2620, 2003.CrossRefGoogle Scholar
  13. 13.
    Davis, M. J. Determination of volumetric flow in capillary tubes using an optical Doppler-velocimeter. Microvasc. Res. 34(2):223–230, 1987.PubMedCrossRefGoogle Scholar
  14. 14.
    Desjardins, C., and B. R. Duling. Microvessel hematocrit—measurement and implications for capillary oxygen-transport. Am. J. Physiol. 252(3):H494–H503, 1987.PubMedGoogle Scholar
  15. 15.
    Einstein, A. The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat. Ann. Phys. 17(8):549–560, 1905.CrossRefGoogle Scholar
  16. 16.
    Falati, S., P. Gross, G. Merrill-Skoloff, B. C. Furie, and B. Furie. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med. 8(10):1175–1181, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Gabbanelli, S., G. Drazer, and J. Koplik. Lattice Boltzmann method for non-Newtonian (power-law) fluids. Phys. Rev. E 72(4):046312–046317, 2005.CrossRefGoogle Scholar
  18. 18.
    Granger, D. N., J. N. Benoit, M. Suzuki, and M. B. Grisham. Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am. J. Physiol. 257(5):G683–G688, 1989.PubMedGoogle Scholar
  19. 19.
    Holme, P. A., U. Orvim, M. J. A. G. Hamers, N. O. Solum, F. R. Brosstad, R. M. Barstad, and K. S. Sakariassen. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler. Thromb. Vasc. Biol. 17(4):646–653, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Kandhai, D., A. Koponen, A. G. Hoekstra, M. Kataja, J. Timonen, and P. M. A. Sloot. Lattice-Boltzmann hydrodynamics on parallel systems. Comput. Phys. Commun. 111(1–3):14–26, 1998.CrossRefGoogle Scholar
  21. 21.
    Kim, M. B., and I. H. Sarelius. Distributions of wall shear stress in venular convergences of mouse cremaster muscle. Microcirculation 10(2):167–178, 2003.PubMedGoogle Scholar
  22. 22.
    Levine, H. A., M. P. McGee, and S. Serna. Diffusion and reaction in the cell glycocalyx and the extracellular matrix. J. Math. Biol. 60(1):1–26, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Lipowsky, H. H. Microvascular rheology and hemodynamics. Microcirculation 12(1):5–15, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Lipowsky, H. H., S. Kovalcheck, and B. W. Zweifach. Distribution of blood rheological parameters in microvasculature of cat mesentery. Circ. Res. 43(5):738–749, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsumoto, M., and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. (TOMACS) 8(1):3–30, 1998.CrossRefGoogle Scholar
  26. 26.
    Merrill, E. W., and G. A. Pelletie. Viscosity of human blood—transition from Newtonian to non-Newtonian. J. Appl. Physiol. 23(2):178–182, 1967.PubMedGoogle Scholar
  27. 27.
    Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15(6):665–673, 2009.PubMedCrossRefGoogle Scholar
  28. 28.
    Papavassiliou, D. V. Turbulent transport from continuous sources at the wall of a channel. Int. J. Heat Mass Transf. 45(17):3571–3583, 2002.CrossRefGoogle Scholar
  29. 29.
    Papavassiliou, D. V., and T. J. Hanratty. The use of Lagrangian-methods to describe turbulent transport of heat from a wall. Ind. Eng. Chem. Res. 34(10):3359–3367, 1995.CrossRefGoogle Scholar
  30. 30.
    Porter, B., R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J. Biomech. 38(3):543–549, 2005.PubMedCrossRefGoogle Scholar
  31. 31.
    Qian, Y. H., D. Dhumieres, and P. Lallemand. Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6):479–484, 1992.CrossRefGoogle Scholar
  32. 32.
    Sakariassen, K. S., P. A. Holme, U. Orvim, R. M. Barstad, N. O. Solum, and F. R. Brosstad. Shear-induced platelet activation and platelet microparticle formation in native human blood. Thromb. Res. 92(6):S33–S41, 1998.PubMedCrossRefGoogle Scholar
  33. 33.
    Skartsis, L., J. L. Kardos, and B. Khomami. Resin flow through fiber beds during composite manufacturing processes. 1. Review of Newtonian flow through fiber beds. Polym. Eng. Sci. 32(4):221–230, 1992.CrossRefGoogle Scholar
  34. 34.
    Stalker, T. J., E. A. Traxler, J. Wu, K. M. Wannemacher, S. L. Cermignano, R. S. Voronov, S. L. Diamond, and L. F. Brass. Hierarchical organization in the hemostatic response and its relationship to the platelet signaling network. Blood (blood-2012-09-457739; published ahead of print January 9, 2013, doi: 10.1182/blood-2012-09-457739), 2012.
  35. 35.
    Succi, S. The Lattice Boltzmann equation for fluid dynamics and beyond. New York: Clarendon Press/Oxford University Press, 2001.Google Scholar
  36. 36.
    Sukop, M. C., D. T. Thorne, and NetLibrary Inc. Lattice Boltzmann Modeling an Introduction for Geoscientists and Engineers. Berlin: Springer, ix, 172 pp., 2006.Google Scholar
  37. 37.
    Swift, M. R., E. Orlandini, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54(5):5041–5052, 1996.CrossRefGoogle Scholar
  38. 38.
    VanGordon, S., R. S. Voronov, T. B. Blue, R. L. Shambaugh, D. V. Papavassiliou, and V. I. Sikavitsas. Effects of scaffold architecture on preosteoblastic cultures under continuous fluid shear. Ind. Eng. Chem. Res. 50(2):620–629, 2010.CrossRefGoogle Scholar
  39. 39.
    Wang, J. Y., X. X. Zhang, A. G. Bengough, and J. W. Crawford. Domain-decomposition method for parallel Lattice Boltzmann simulation of incompressible flow in porous media. Phys. Rev. E 72(1):016706–016711, 2005.CrossRefGoogle Scholar
  40. 40.
    Wang, W. W., and M. R. King. Multiscale modeling of platelet adhesion and thrombus growth. Ann. Biomed. Eng. 40(11):2345–2354, 2012.PubMedCrossRefGoogle Scholar
  41. 41.
    Windberger, U., A. Bartholovitsch, R. Plasenzotti, K. J. Korak, and G. Heinze. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp. Physiol. 88(3):431–440, 2003.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu, Z. L., N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, and M. Alber. Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5(4):769–779, 2009.CrossRefGoogle Scholar
  43. 43.
    Yoshino, A., Y. Hotta, T. Hirozane, and M. Endo. A numerical method for incompressible non-newtonian fluid flows based on the Lattice Boltzmann method. J. Nonnewton. Fluid Mech. 147(1–2):69–78, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Roman S. Voronov
    • 1
  • Timothy J. Stalker
    • 2
  • Lawrence F. Brass
    • 2
  • Scott L. Diamond
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular Engineering, Institute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Medicine and PharmacologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations