Annals of Biomedical Engineering

, Volume 41, Issue 9, pp 1803–1810 | Cite as

Outcomes from a Postgraduate Biomedical Technology Innovation Training Program: The First 12 Years of Stanford Biodesign

  • Todd J. Brinton
  • Christine Q. Kurihara
  • David B. Camarillo
  • Jan B. Pietzsch
  • Julian Gorodsky
  • Stefanos A. Zenios
  • Rajiv Doshi
  • Christopher Shen
  • Uday N. Kumar
  • Anurag Mairal
  • Jay Watkins
  • Richard L. Popp
  • Paul J. Wang
  • Josh Makower
  • Thomas M. Krummel
  • Paul G. Yock
Article

Abstract

The Stanford Biodesign Program began in 2001 with a mission of helping to train leaders in biomedical technology innovation. A key feature of the program is a full-time postgraduate fellowship where multidisciplinary teams undergo a process of sourcing clinical needs, inventing solutions and planning for implementation of a business strategy. The program places a priority on needs identification, a formal process of selecting, researching and characterizing needs before beginning the process of inventing. Fellows and students from the program have gone on to careers that emphasize technology innovation across industry and academia. Biodesign trainees have started 26 companies within the program that have raised over $200 million and led to the creation of over 500 new jobs. More importantly, although most of these technologies are still at a very early stage, several projects have received regulatory approval and so far more than 150,000 patients have been treated by technologies invented by our trainees. This paper reviews the initial outcomes of the program and discusses lessons learned and future directions in terms of training priorities.

Keywords

Medtech Medical device Invention Needs-based Fellowship Multidisciplinary 

Supplementary material

10439_2013_761_MOESM1_ESM.pdf (21 kb)
Supplementary material 1 (PDF 21 kb)

References

  1. 1.
    Armstrong, D., W. Marston, A. Reyzelman, and R. Kirsner. Comparative effectiveness of mechanically and electrically powered negative pressure wound therapy devices: a multicenter randomized controlled trial. Wound Repair Regen. 20:332–341, 2012.PubMedCrossRefGoogle Scholar
  2. 2.
    Byers, T., R. Dorf, and A. Nelson. Technology Ventures: From Idea to Enterprise. New York: McGraw-Hill, 2010, 704 pp.Google Scholar
  3. 3.
    Estrin, J. Closing the Innovation Gap. Columbus: McGraw-Hill, 2008, 272 pp.Google Scholar
  4. 4.
    Fong, K., D. Hu, S. Eichstadt, D. Gupta, M. Pinto, G. Gurtner, M. Longaker, and H. Lorenz. The SNaP system: biomechanical and animal model testing of a novel ultraportable negative-pressure wound therapy system. Plast. Reconstr. Surg. 125:1362–1371, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Golish, S., L. Fielding, V. Agarwal, J. Buckley, and T. Alamin. Failure strength of lumbar spinous processes loaded in a tension band model laboratory investigation. J. Neurosurg. Spine 17:69–73, 2012.PubMedCrossRefGoogle Scholar
  6. 6.
    Immelt, J. R., V. Govindarajan, and C. Trimble. How GE is disrupting itself. Harv. Bus. Rev. 87:56–65, 2009.Google Scholar
  7. 7.
    Kelley, T., and J. Littman. The Art of Innovation: Lessons in Creativity from IDEO, America’s Leading Design Firm. New York: Random House, 2001, 320 pp.Google Scholar
  8. 8.
    Pugh, S. Concept selection—a method that works. Int. Conf. Eng. Des. 81:497–506, 1981.Google Scholar
  9. 9.
    Radjou, N., J.Prahbhu, and S. Ahuja. Jugaad Innovation. San Francisco, CA: Jossey-Bass, 2012, 275 pp.Google Scholar
  10. 10.
    Sattar, A., D. Drigalla, S. Higgins, and D. Schreiber. Prevalence of arrhythmias in ED patients discharged using a novel ambulatory cardiac monitor. J. Am. Coll. Cardiol. 59:E642–E642, 2012.Google Scholar
  11. 11.
    Tuckman, B. W. Developmental sequence in small groups. Psychol. Bull. 63:384–399, 1965.PubMedCrossRefGoogle Scholar
  12. 12.
    Wasden, C. Medical technology innovation scorecard: the race for global leadership. PricewaterhouseCoopers Report, 2011, 49 pp.Google Scholar
  13. 13.
    Yock, P. G., J. Makower, S. A. Zenios, T. J. Brinton, U. Kumar, T. Krummel, and L. Denend (eds.). Biodesign: Innovating New Medical Technologies. London: Cambridge Press, 2009, 742 pp.Google Scholar
  14. 14.
    Yock, P. G., T. J. Brinton, and S. A. Zenios. Teaching biomedical technology innovation as a discipline. Sci. Transl. Med. 3:92–109, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Todd J. Brinton
    • 1
  • Christine Q. Kurihara
    • 1
  • David B. Camarillo
    • 1
  • Jan B. Pietzsch
    • 1
  • Julian Gorodsky
    • 1
  • Stefanos A. Zenios
    • 1
  • Rajiv Doshi
    • 1
  • Christopher Shen
    • 1
  • Uday N. Kumar
    • 1
  • Anurag Mairal
    • 1
  • Jay Watkins
    • 1
  • Richard L. Popp
    • 1
  • Paul J. Wang
    • 1
  • Josh Makower
    • 1
  • Thomas M. Krummel
    • 1
  • Paul G. Yock
    • 1
  1. 1.Stanford University Biodesign ProgramStanford UniversityStanfordUSA

Personalised recommendations