Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 5, pp 917–930 | Cite as

Pore Geometry Regulates Early Stage Human Bone Marrow Cell Tissue Formation and Organisation

  • J. KnychalaEmail author
  • N. Bouropoulos
  • C. J. Catt
  • O. L. Katsamenis
  • C. P. Please
  • B. G. Sengers
Article

Abstract

Porous architecture has a dramatic effect on tissue formation in porous biomaterials used in regenerative medicine. However, the wide variety of 3D structures used indicates there is a clear need for the optimal design of pore architecture to maximize tissue formation and ingrowth. Thus, the aim of this study was to characterize initial tissue growth solely as a function of pore geometry. We used an in vitro system with well-defined open pore slots of varying width, providing a 3D environment for neo-tissue formation while minimizing nutrient limitations. Results demonstrated that initial tissue formation was strongly influenced by pore geometry. Both velocity of tissue invasion and area of tissue formed increased as pores became narrower. This is associated with distinct patterns of actin organisation and alignment depending on pore width, indicating the role of active cell generated forces. A mathematical model based on curvature driven growth successfully predicted both shape of invasion front and constant rate of growth, which increased for narrower pores as seen in experiments. Our results provide further evidence for a front based, curvature driven growth mechanism depending on pore geometry and tissue organisation, which could provide important clues for 3D scaffold design.

Keywords

Tissue engineering Human bone marrow cells Actin Calcium phosphate cements Mathematical modelling Porous scaffolds 

Notes

Acknowledgments

We would like to thank Dr R. Tare and the Bone and Joint Research Group in Southampton for their assistance and for providing the cell sample. Dr C. Catt was supported by Symbiosis project funding, EPSRC EP/F032994/1.

Supplementary material

10439_2013_748_MOESM1_ESM.tif (1.5 mb)
Fig. S1 (a) Example of a 3D reconstruction of the actin network in a 400 μm pore (70 μm z-stack, pore walls were indicated manually for illustrative purposes only). (b) Perpendicular cross section along the y–z plane showing the thin cell layer at the immediate front. (c) Longitudinal cross section along (x–z) plane showing tissue thickening away from the front of migration (TIFF 1580 kb)
10439_2013_748_MOESM2_ESM.avi (22.2 mb)
Fig. S2 & S3 Time lapse video recorded for 10 h, pictures taken every 20 min for 200 μm (S2) and 500 μm (S3) (AVI 22,715 kb)
10439_2013_748_MOESM3_ESM.avi (16 mb)
Supplementary material 3 (AVI 16,376 kb)

References

  1. 1.
    Andriotis, O., O. Katsamenis, D. Mouzakis, and N. Bouropoulos. Preparation and characterization of bioceramics produced from calcium phosphate cements. Cryst. Res. Technol. 45:239–243, 2010.CrossRefGoogle Scholar
  2. 2.
    Aratyn-Schaus, Y., P. W. Oakes, and M. L. Gardel. Dynamic and structural signatures of lamellar actomyosin force generation. Mol. Biol. Cell 22:1330–1339, 2010.CrossRefGoogle Scholar
  3. 3.
    Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.CrossRefPubMedGoogle Scholar
  4. 4.
    Bidan C. M., K. P. Kommareddy, M. Rumpler, P. Kollmannsberger, Y. J. M. Bréchet, P. Fratzl, and J. W. C. Dunlop. How linear tension converts to curvature: geometric control of bone tissue growth. PLoS ONE 7(5): e36336, 2012. doi: 10.1371/journal.pone.0036336.
  5. 5.
    Biton, Y. Y., and S. A. Safran. The cellular response to curvature-induced stress. Phys. Biol. 6:046010, 2009.CrossRefPubMedGoogle Scholar
  6. 6.
    Blankenship, J. T., S. T. Backovic, J. S. Sanny, O. Weitz, and J. A. Zallen. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11:459–470, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Bohner, M., Y. Loosli, G. Baroud, and D. Lacroix. Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 7:478–484, 2011.CrossRefPubMedGoogle Scholar
  8. 8.
    Bowers, K. T., J. C. Keller, B. A. Randolph, D. G. Wick, and C. M. Michaels. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int. J. Oral Maxillofac. Implants 7:302–310, 1992.PubMedGoogle Scholar
  9. 9.
    Buxboim, A., I. L. Ivanovska, and D. E. Discher. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J. Cell Sci. 123:297–308, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Dalby, M. J., N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. Wilkinson, and R. O. Oreffo. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6:997–1003, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    Dawson, J. I., and R. O. C. Oreffo. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch. Biochem. Biophys. 473:124–131, 2008.CrossRefPubMedGoogle Scholar
  12. 12.
    Deligianni, D., N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241–1251, 2001.CrossRefPubMedGoogle Scholar
  13. 13.
    Deshpande, V. S., R. M. McMeeking, and A. G. Evans. A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. R. Soc. A. Math. Phys. Eng. Sci. 463:787–815, 2007.CrossRefGoogle Scholar
  14. 14.
    Ducheyne, P., and Q. Qiu. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303, 1999.CrossRefPubMedGoogle Scholar
  15. 15.
    Elaine, N., and K. H. Marieb. Human Anatomy & Physiology. San Francisco, CA: Pearson Benjamin Cummings, 2010.Google Scholar
  16. 16.
    Engelmayr, Jr., G. C., G. D. Papworth, S. C. Watkins, J. E. Mayer, Jr., and M. S. Sacks. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39:1819–1831, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Frosch, K. H., F. Barvencik, C. H. Lohmann, V. Viereck, H. Siggelkow, J. Breme, K. Dresing, and K. M. Sturmer. Migration, matrix production and lamellar bone formation of human osteoblast-like cells in porous titanium implants. Cells Tissues Organs. 170:214–227, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Frosch, K. H., F. Barvencik, V. Viereck, C. H. Lohmann, K. Dresing, J. Breme, E. Brunner, and K. M. Sturmer. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J. Biomed. Mater. Res. A. 68:325–334, 2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Galbraith, C. G., and M. P. Sheetz. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl. Acad. Sci. USA 94:9114–9118, 1997.CrossRefPubMedGoogle Scholar
  20. 20.
    Han, S. J., and N. J. Sniadecki. Simulations of the contractile cycle in cell migration using a bio-chemical-mechanical model. Comput. Methods Biomech. Biomed. Eng. 14:459–468, 2011.CrossRefGoogle Scholar
  21. 21.
    Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103, 2002.CrossRefPubMedGoogle Scholar
  22. 22.
    Hulbert, S. F., F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert, and F. H. Stelling. Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater. Res. 4:433–456, 1970.CrossRefPubMedGoogle Scholar
  23. 23.
    Kapfer, S. C., S. T. Hyde, K. Mecke, C. H. Arns, and G. E. Schroder-Turk. Minimal surface scaffold designs for tissue engineering. Biomaterials 32:6875–6882, 2011.CrossRefPubMedGoogle Scholar
  24. 24.
    Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491, 2005.CrossRefPubMedGoogle Scholar
  25. 25.
    Kong, H. J., T. R. Polte, E. Alsberg, and D. J. Mooney. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl. Acad. Sci. U S A 102:4300–4305, 2005.CrossRefPubMedGoogle Scholar
  26. 26.
    Lamolle, S. F., M. Monjo, M. Rubert, H. J. Haugen, S. P. Lyngstadaas, and J. E. Ellingsen. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials 30:736–742, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    Li, B., F. Li, K. M. Puskar, and J. H. Wang. Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J. Biomech. 42:1622–1627, 2009.CrossRefPubMedGoogle Scholar
  28. 28.
    Lincks, J., B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean, and Z. Schwartz. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19:2219–2232, 1998.CrossRefPubMedGoogle Scholar
  29. 29.
    Lohmann, C. H., L. F. Bonewald, M. A. Sisk, V. L. Sylvia, D. L. Cochran, D. D. Dean, B. D. Boyan, and Z. Schwartz. Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J. Bone Miner. Res. 15:1169–1180, 2000.CrossRefPubMedGoogle Scholar
  30. 30.
    Lossdörfer, S., Z. Schwartz, L. Wang, C. Lohmann, J. Turner, M. Wieland, D. Cochran, and B. Boyan. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. Biomed. Mater. Res., Part A 70:361–369, 2004.CrossRefGoogle Scholar
  31. 31.
    Lu, J., B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, and B. Thierry. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J. Mater. Sci. Mater. Med. 10:111–120, 1999.CrossRefPubMedGoogle Scholar
  32. 32.
    Mathur, A., S. W. Moore, M. P. Sheetz, and J. Hone. The role of feature curvature in contact guidance. Acta Biomater. 8:2595–2601, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Mege, R. M., J. Gavard, and M. Lambert. Regulation of cell–cell junctions by the cytoskeleton. Curr. Opin. Cell Biol. 18:541–548, 2006.CrossRefPubMedGoogle Scholar
  34. 34.
    Melchels, F. P. W., A. Barradas, C. A. Van Blitterswijk, J. De Boer, J. Feijen, and D. W. Grijpma. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 6:4208–4217, 2010.CrossRefPubMedGoogle Scholar
  35. 35.
    Montell, D. J. Morphogenetic cell movements: diversity from modular mechanical properties. Science 322:1502–1505, 2008.CrossRefPubMedGoogle Scholar
  36. 36.
    Moroni, L., J. R. de Wijn, and C. A. van Blitterswijk. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27:974–985, 2006.CrossRefPubMedGoogle Scholar
  37. 37.
    Murray, J. D. Spatial models and biomedical applications. Math. Biol. 18:468–490, 2003.Google Scholar
  38. 38.
    Nathan, A. S., B. M. Baker, N. L. Nerurkar, and R. L. Mauck. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 7:57–66, 2011.CrossRefPubMedGoogle Scholar
  39. 39.
    Nelson, C. M. Geometric control of tissue morphogenesis. Biochim. Biophys. Acta 1793:903–910, 2009.CrossRefPubMedGoogle Scholar
  40. 40.
    Nelson, C. M., R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. U S A 102:11594–11599, 2005.CrossRefPubMedGoogle Scholar
  41. 41.
    Pamula, E., L. Bacakova, E. Filova, J. Buczynska, P. Dobrzynski, L. Noskova, and L. Grausova. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J. Mater. Sci. Mater. Med. 19:425–435, 2008.CrossRefPubMedGoogle Scholar
  42. 42.
    Peyton, S. R., C. M. Ghajar, C. B. Khatiwala, and A. J. Putnam. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem. Biophys. 47:300–320, 2007.CrossRefPubMedGoogle Scholar
  43. 43.
    Ruiz, S. A., and C. S. Chen. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26:2921–2927, 2008.CrossRefPubMedGoogle Scholar
  44. 44.
    Rumpler, M., A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl. The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface 5:1173–1180, 2008.CrossRefPubMedGoogle Scholar
  45. 45.
    Sabetrasekh, R., H. Tiainen, J. Reseland, J. Will, J. Ellingsen, S. Lyngstadaas, and H. Haugen. Impact of trace elements on biocompatibility of titanium scaffolds. Biomed. Mater. 5:015003, 2010.CrossRefGoogle Scholar
  46. 46.
    Sanz-Herrera, J. A., P. Moreo, J. M. Garcia-Aznar, and M. Doblare. On the effect of substrate curvature on cell mechanics. Biomaterials 30:6674–6686, 2009.CrossRefPubMedGoogle Scholar
  47. 47.
    Sengers, B. G., C. P. Please, M. Taylor, and R. O. Oreffo. Experimental-computational evaluation of human bone marrow stromal cell spreading on trabecular bone structures. Ann. Biomed. Eng. 37:1165–1176, 2009.CrossRefPubMedGoogle Scholar
  48. 48.
    Sundelacruz, S., and D. L. Kaplan. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin. Cell Dev. Biol. 20:646–655, 2009.CrossRefPubMedGoogle Scholar
  49. 49.
    Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. U S A 100(4):1484–1489, 2003.CrossRefPubMedGoogle Scholar
  50. 50.
    Tare, R. S., J. C. Babister, J. Kanczler, and R. O. Oreffo. Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol. Cell. Endocrinol. 288:11–21, 2008.CrossRefPubMedGoogle Scholar
  51. 51.
    Treiser, M. D., E. H. Yang, S. Gordonov, D. M. Cohen, I. P. Androulakis, J. Kohn, C. S. Chen, and P. V. Moghe. Cytoskeleton-based forecasting of stem cell lineage fates. Proc. Natl. Acad. Sci. U S A 107:610–615, 2010.CrossRefPubMedGoogle Scholar
  52. 52.
    Tsuruga, E., H. Takita, H. Itoh, Y. Wakisaka, and Y. Kuboki. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 121:317–324, 1997.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang, J. H., F. Jia, T. W. Gilbert, and S. L. Woo. Cell orientation determines the alignment of cell-produced collagenous matrix. J. Biomech. 36:97–102, 2003.CrossRefPubMedGoogle Scholar
  54. 54.
    Tambe D. T., C. Corey Hardin, T. E. Angelini, K. Rajendran, C. Y. Park, X. Serra-Picamal, E. H. Zhou, M. H. Zaman, J. P. Butler, D. A. Weitz, J. J. Fredberg, and X. Trepat. Collective cell guidance by cooperative intercellular forces. Nat. Mater.Google Scholar
  55. 55.
    Yang, S. F., H. Y. Yang, X. P. Chi, J. R. G. Evans, I. Thompson, R. J. Cook, and P. Robinson. Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater. Des. 29:1802–1809, 2008.CrossRefGoogle Scholar
  56. 56.
    Zeltinger, J., J. K. Sherwood, D. A. Graham, R. Mueller, and L. G. Griffith. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 7:557–572, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • J. Knychala
    • 1
    Email author
  • N. Bouropoulos
    • 2
    • 3
  • C. J. Catt
    • 4
  • O. L. Katsamenis
    • 1
    • 2
  • C. P. Please
    • 4
  • B. G. Sengers
    • 1
  1. 1.Bioengineering Science Research Group, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  2. 2.Department of Materials ScienceUniversity of PatrasRio, PatrasGreece
  3. 3.Foundation for Research and TechnologyHellas-Institute of Chemical Engineering and High Temperature Chemical Processes—FORTH/ICE-HTPatrasGreece
  4. 4.School of MathematicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations