Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 5, pp 1074–1083 | Cite as

Improved Estimation of Sweating Based on Electrical Properties of Skin

  • Christian TronstadEmail author
  • Håvard Kalvøy
  • Sverre Grimnes
  • Ørjan G. Martinsen
Article

Abstract

Skin conductance (SC) has previously been reported to correlate strongly with sweat rate (Swr) within subjects, but weakly between subjects. Using a new solution for simultaneous recording of SC, skin susceptance (SS) and skin potential (SP) at the same skin site, the aim of this study was to assess how accurately sweat production can be estimated based on combining these electrical properties of skin. In 40 subjects, SC, SS, SP and Swr by skin water loss was measured during relaxation and mental stress. SC and Swr had high intraindividual correlations (median r = 0.77). Stepwise multilinear regression with bootstrap validation lead to a sweating estimation model based on the sum of SC increases, the SP area under the curve and the SS area under the curve, yielding an interindividual accuracy of R 2 = 0.73, rmse = 12.9%, limits of agreement of +27.6, −30.4% and an intraclass correlation coefficient of 0.84. Bootstrapping of training and test-sets gave median rmse = 15.4%, median R 2 = 0.66. The model was also validated for intraindividual variability. The results show that estimation of sweating is significantly improved by the addition of SS and SP measurement.

Keywords

Sweating Sweat rate Skin conductance Skin potential Skin susceptance Bioimpedance Multilinear model 

References

  1. 1.
    Atkinson, G., and A. M. Nevill. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 26:217–238, 1998.PubMedCrossRefGoogle Scholar
  2. 2.
    Batko, J. J. The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 19:3–11, 1966.CrossRefGoogle Scholar
  3. 3.
    Boucsein, W. Electrodermal Activity (2nd ed.). New York: Springer, 2012.CrossRefGoogle Scholar
  4. 4.
    Cicchetti, D. V., and S. A. Sparrow. Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior. Am. J. Ment. Defic. 86:127–137, 1981.PubMedGoogle Scholar
  5. 5.
    Costa-Santos, C., J. Bernardes, D. Ayres-de-Campos, A. Costa, and C. Costa. The limits of agreement and the intraclass correlation coefficient may be inconsistent in the interpretation of agreement. Comment in J. Clin. Epidemiol. 64:701–702, 2011.Google Scholar
  6. 6.
    Critchley, L. A. H., and J. A. J. H. Critchley. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. 15:85–91, 1999.CrossRefGoogle Scholar
  7. 7.
    Dooren, M., J. J. G. Vries, and J. H. Janssen. Emotional sweating across the body: comparing 16 different skin conductance measurement locations. Physiol. Behav. 106:298–304, 2012.PubMedCrossRefGoogle Scholar
  8. 8.
    Edelberg, R. Electrical properties of the skin. In: Methods in Psychophysiology, edited by C. C. Brown. Baltimore: Williams & Wilkins, 1967, pp. 1–53.Google Scholar
  9. 9.
    Edelberg, R. Electrical activity of the skin: its measurement and uses in psychophysiology. In: Handbook of Psychophysiology, edited by N. S. Greenfield, and R. A. Sternbach. New York: Hold, Rinehart & Winston, 1972, pp. 367–418.Google Scholar
  10. 10.
    Edelberg, R. Electrodermal mechanisms: a critique of the two-effector hypothesis and a proposed replacement. In: Progress in Electrodermal Research, edited by J. C. Roy, and et al. New York: Plenum Press, 1993, pp. 7–30.CrossRefGoogle Scholar
  11. 11.
    Egawa, M. In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy. Acta Derm. Venereol. 87:4–8, 2007.PubMedCrossRefGoogle Scholar
  12. 12.
    Ellaway, P. H., A. Kuppuswamy, A. Nicotra, and C. J. Mathias. Sweat production and the sympathetic skin response: improving the clinical assessment of autonomic function. Auton. Neurosci. 155(109–114):2010, 2010.Google Scholar
  13. 13.
    Gagnon, D., M. Ganio, R. A. I. Lucas, J. Pearson, C. G. Crandall, and G. P. Kenny. The modified iodine-paper technique for the standardized determination of sweat gland activation. J. Appl. Physiol. 112:1419–1425, 2012.PubMedCrossRefGoogle Scholar
  14. 14.
    Grimnes, S., A. Jabbari, Ø. G. Martinsen, and C. Tronstad. Electrodermal activity by DC potential and AC conductance measured simultaneously at the same skin site. Skin Res. Technol. 17:26–34, 2011.PubMedCrossRefGoogle Scholar
  15. 15.
    Grimnes, S., and Ø. G. Martinsen. Bioimpedance and Bioelectricity Basics, 2nd ed. New York: Academic Press, 488 pp., 2008.Google Scholar
  16. 16.
    Kunimoto, M., K. Kirnö, M. Elam, and B. G. Wallin. Neuroeffector characteristics of sweat glands in the human hand activated by regular neural stimuli. J. Physiol. 442:391–411, 1991.PubMedGoogle Scholar
  17. 17.
    Lobeck, C. C., and D. Huebner. Effect of age, sex, and cystic fibrosis on the sodium and potassium content of human sweat. Pediatrics 30:172–179, 1962.PubMedGoogle Scholar
  18. 18.
    Martinsen, Ø. G., S. Grimnes, and S. J. Karlsen. Electrical methods for skin moisture assessment. Skin Pharmacol. 8:237–245, 1995.PubMedCrossRefGoogle Scholar
  19. 19.
    Martinsen, Ø. G., S. Grimnes, J. K. Nilsen, C. Tronstad, W. Jang, H. Kin, K. Shin, and M. Naderi. Gravimetric method for calibration of skin hydration measurements. IEEE Trans. Biomed. Eng. 55:728–732, 2008.PubMedCrossRefGoogle Scholar
  20. 20.
    Montagna, W., and P. F. Parakkal. The Structure and Function of Skin (3rd ed.). New York: Academic, 1974.Google Scholar
  21. 21.
    Muthny, F. A. Elektrodermale Aktivität und palmare Schwitzaktivität als Biosignale der Haut in der psychophysiologischen Grundlagenforschung. Freiburg: Dreisam, 1984.Google Scholar
  22. 22.
    Nishiyama, T., J. Sugenoya, T. Matsumoto, S. Iwase, and T. Mano. Irregular activation of individual sweat glands in human sole observed by a videomicroscopy. Auton. Neurosci. 88:117–126, 2001.PubMedCrossRefGoogle Scholar
  23. 23.
    Pinnagoda, J., A. Tupker, T. Agner, and J. Serup. Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermat. 22:164–178, 1990.CrossRefGoogle Scholar
  24. 24.
    Poh, M. Z., N. C. Swenson, and R. W. Picard. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 57:1243–1252, 2010.PubMedCrossRefGoogle Scholar
  25. 25.
    Portney, L., and M. Watkins. Foundations of Clinical Research: Applications to Practice. New Jersey: Prentice Hall Health, 2000.Google Scholar
  26. 26.
    Treffel, P., and B. Gabard. Stratum corneum dynamic function measurements after moisturizer or irritant application. Arch. Dermatol. Res. 287:474–479, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Tronstad, C., Ø. G. Martinsen, and S. Grimnes. Embedded instrumentation for skin admittance measurement. In: 30th Annual International Conference of the IEEE. Engineering in Medicine and Biology Society, EMBS 2008. 2008.Google Scholar
  28. 28.
    Tronstad, C., S. Grimnes, Ø. G. Martinsen, V. Amundsen, and S. Wojniusz. PC-based instrumentation for electrodermal activity measurement. J. Phys.: Conf. Series 224:012093, 2010.CrossRefGoogle Scholar
  29. 29.
    Tronstad, C., G. K. Johnsen, S. Grimnes, and Ø. G. Martinsen. A study on electrode gels for skin conductance measurement. Physiol. Meas. 31:1395–1410, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Venables, P. H., and M. J. Christie. Electrodermal activity. In: Techniques in Psychophysiology (pp 3–67), edited by I. Martin, and O. H. Venables. New York: Wiley, 1980.Google Scholar
  31. 31.
    Wilson, K. A., A. J. Dowling, M. Abdolell, and I. F. Tannock. Perception of quality of life by patients, partners and treating physicians. Qual. Life Res. 9:1041–1052, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Christian Tronstad
    • 1
    Email author
  • Håvard Kalvøy
    • 1
  • Sverre Grimnes
    • 1
    • 2
  • Ørjan G. Martinsen
    • 2
    • 1
  1. 1.Department of Clinical and Biomedical Engineering, RikshospitaletOslo University HospitalOsloNorway
  2. 2.Department of PhysicsUniversity of OsloOsloNorway

Personalised recommendations