Annals of Biomedical Engineering

, Volume 41, Issue 4, pp 725–743 | Cite as

Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

  • J. M. Ortega
  • J. Hartman
  • J. N. Rodriguez
  • D. J. Maitland
Article

Abstract

Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam.

Keywords

Aneurysm Shape memory polymer foam Computational fluid dynamics Post-treatment hemodynamics 

Abbreviations

BA

Basilar artery

CFD

Computational fluid dynamics

FHDD

Forchheimer-Hazen-Dupuit-Darcy

GDC

Guglielmi detachable coil

PCA

Posterior cerebral artery

SCA

Superior cerebellar artery

SMP

Shape memory polymer

Supplementary material

10439_2012_719_MOESM1_ESM.mov (7.5 mb)
MOV (7978 KB)
10439_2012_719_MOESM2_ESM.mov (7.4 mb)
MOV (7978 KB)MOV (7978 KB)
10439_2012_719_MOESM3_ESM.mov (8 mb)
MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)
10439_2012_719_MOESM4_ESM.mov (7.7 mb)
MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)
10439_2012_719_MOESM5_ESM.mov (7.9 mb)
MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)
10439_2012_719_MOESM6_ESM.mov (7.8 mb)
MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)

References

  1. 1.
    Anand, M., et al. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5(3–4):183–218, 2003.CrossRefGoogle Scholar
  2. 2.
    Anderson, J. M. Biological responses to materials. Annu. Rev. Mater. Res. 31:81–110, 2001.CrossRefGoogle Scholar
  3. 3.
    Ballyk, P. D., et al. Simulation of non-Newtonian blood flow in an end-to-end anastomosis. Biorheology 31(5):565–586, 1994.PubMedGoogle Scholar
  4. 4.
    Bedekar, A. S., et al. A computational model combining vascular biology and haemodynamics for thrombosis prediction in anatomically accurate cerebral aneurysms. Food. Bioprod. Process. 83(C2):118–126, 2005.CrossRefGoogle Scholar
  5. 5.
    Bernsdorf, J., et al. Applying the lattice Boltzmann technique to biofluids: a novel approach to simulate blood coagulation. Comput. Math. Appl. 55:1408–1414, 2008.CrossRefGoogle Scholar
  6. 6.
    Biasetti, J., et al. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front. Physiol. 3(266):1–16, 2012.Google Scholar
  7. 7.
    Bodily, K. D., et al. Stent-assisted coiling in acutely ruptured intracranial aneurysms: a qualitative, systematic review of the literature. Am. J. Neuroradiol. 32:1232–1236, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Brinjikji, W., et al. Effect of age on outcomes of treatment of unruptured cerebral aneurysms: a study of the National Inpatient Sample 2001–2008. Stroke 42:1320–1324, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Cebral, J. R., and R. Löhner. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE T. Med. Imaging 24(4):468–476, 2005.CrossRefGoogle Scholar
  10. 10.
    Cebral, J. R., et al. Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad. Radiol. 14:804–813, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Cloft, H. J., et al. Use of three-dimensional Guglielmi detachable coils in the treatment of wide-necked cerebral aneurysms. Am. J. Neuroradiol. 21:1312–1314, 2000.PubMedGoogle Scholar
  12. 12.
    Corbett, S. C., et al. In vitro and computational thrombosis on artificial surfaces with shear stress. Artif. Organs 34(7):561–569, 2010.PubMedCrossRefGoogle Scholar
  13. 13.
    Demirdzic, I., et al. A collocated finite volume method for predicting flows at all speeds. Int. J. Numer. Meth. Fl. 16:1029–1050, 1993.CrossRefGoogle Scholar
  14. 14.
    Demirdzic, I., and S. Musaferija. Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. Mech. Eng. 125:235–255, 1995.CrossRefGoogle Scholar
  15. 15.
    Duncan, D. D., et al. The effect of compliance on wall shear in casts of a human aortic bifurcation. J. Biomech. Eng.-T. ASME 112:183–188, 1990.CrossRefGoogle Scholar
  16. 16.
    Einav, S., and D. Bluestein. Dynamics of blood flow and platelet transport in pathological vessels. Ann. N. Y. Acad. Sci. 1015:351–366, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Ethier, C. R., and C. A. Simmons. Introductory Biomechanics: From Cells to Organisms. New York: Cambridge University Press, 2008.Google Scholar
  18. 18.
    Evans, P. A., et al. Rheometry and associated techniques for blood coagulation studies. Med. Eng. Phys. 30:671–679, 2008.PubMedCrossRefGoogle Scholar
  19. 19.
    Ferguson, G. G. Turbulence in human intracranial saccular aneurysms. J. Neurosurg. 33:485–497, 1970.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics, 3rd edition. Berlin: Springer, 2002.Google Scholar
  21. 21.
    Fisher, C., and J. Stroud Rossmann. Effect of non-Newtonian behavior on hemodynamics of cerebral aneurysms. J. Biomech. Eng.-T. ASME 131:091004, 2009.CrossRefGoogle Scholar
  22. 22.
    Fogelson, A. L., and R. D. Guy. Immersed-boundary-type models of intravascular platelet aggregation. Comput. Method. Appl. M. 197:2087–2104, 2008.CrossRefGoogle Scholar
  23. 23.
    Friedrich, R., and A. J. Reininger. Occlusive thrombus formation on indwelling catheters: in vitro investigation and computational analysis. Thromb. Haemostasis 73(1):66–72, 1995.Google Scholar
  24. 24.
    Goodman, P. D., et al. Computational model of device-induced thrombosis and thromboembolism. Ann. Biomed. Eng. 33(6):780–797, 2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Groden, C., et al. Three-dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm. J. Cerebr. Blood F. Met. 21:1464–1471, 2001.CrossRefGoogle Scholar
  26. 26.
    Harrison, S. E., et al. Application and validation of the Lattice Boltzmann method for modelling flow-related clotting. J. Biomech. 40:3023–3028, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    Harrison, S. E., et al. A lattice Boltzmann framework for simulation of thrombogensis. Prog. Comput. Fluid. Dyn. 8(1–4):121–128, 2008.CrossRefGoogle Scholar
  28. 28.
    Hayakawa, M., et al. Detection of pulsation in ruptured and unruptured cerebral aneurysms by electrocardiographically gated 3-dimensional computed tomographic angiography with a 320-row area detector computed tomography and evaluation of its clinical usefulness. Neurosurgery 69:843–851, 2011.PubMedCrossRefGoogle Scholar
  29. 29.
    Higashida, R. T., et al. Treatment of unruptured intracranial aneurysms: a nationwide assessment of effectiveness. Am. J. Neuroradiol. 28:146–151, 2007.PubMedGoogle Scholar
  30. 30.
    Hwang, W., et al. Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device. Biomech. Model. Mechanobiol. 11:715–729, 2012.PubMedCrossRefGoogle Scholar
  31. 31.
    Johnston, B. M., et al. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37:709–720, 2004.PubMedCrossRefGoogle Scholar
  32. 32.
    Jou, L.-D., et al. Determining intra-aneurysmal flow for coiled cerebral aneurysms with digital fluoroscopy. Biomed. Eng.-App. Bas. C. 16(2):43–48, 2004.CrossRefGoogle Scholar
  33. 33.
    Kakalis, N. M. P., et al. The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE T. Bio-Med. Eng. 27(6):814–824, 2008.Google Scholar
  34. 34.
    Kato, T., et al. Contrast-enhanced 2D cine phase MR angiography for measurement of basilar artery blood flow in posterior circulation ischemia. Am. J. Neuroradiol. 23:1346–1351, 2002.PubMedGoogle Scholar
  35. 35.
    Lage, J. L. The fundamental theory of flow through permeable media from Darcy to turbulence. In: Transport Phenomena in Porous Media, edited by D. B. Ingham and I. Pop. Pergamon, 1998, pp. 1–30.Google Scholar
  36. 36.
    Larrabide, I., et al. Fast virtual deployment of self-expandable stents: method and in vitro evaluation for intracranial aneurysmal stenting. Med. Image Anal. 16(3):721–730, 2012.PubMedCrossRefGoogle Scholar
  37. 37.
    Leake, C. B., et al. Increasing treatment of ruptured cerebral aneurysms at high-volume centers in the United States. J. Neurosurg. 115:1179–1183, 2011.PubMedCrossRefGoogle Scholar
  38. 38.
    Maitland, D. J., et al. Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms. J. Biomed. Opt. 12(3):030504, 2007.PubMedCrossRefGoogle Scholar
  39. 39.
    Maitland, D. J., et al. Design and realization of biomedical devices based on shape memory polymers. In: Proceedings of the Material Research Society Symposium, edited by A. Lendlein and P. Shastri, 2009, 1190:NN06-01.Google Scholar
  40. 40.
    Mathur, S. R., and J. Y. Murthy. Pressure-based method for unstructured meshes. Numer. Heat. Tr. B-Fund 31(2):195–214, 1997.CrossRefGoogle Scholar
  41. 41.
    Mathur, S. R., and J. Y. Murthy. Pressure boundary conditions for incompressible flow using unstructured meshes. Numer. Heat. Tr. B-Fund 32(3):283–298, 1997.CrossRefGoogle Scholar
  42. 42.
    Metcalfe, A., et al. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497, 2003.PubMedCrossRefGoogle Scholar
  43. 43.
    Murayama, Y., et al. Endovascular treatment of experimental aneurysms by use of a combination of liquid embolic agents and protective devices. Am. J. Neuroradiol. 21:1726–1735, 2000.PubMedGoogle Scholar
  44. 44.
    Narracott, A., et al. Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms. J. Artif. Organs 8:56–62, 2005.PubMedCrossRefGoogle Scholar
  45. 45.
    Olinger, C. P., and J. F. Wasserman. Electronic stethoscope for detection of cerebral aneurysm, vasospasm and arterial disease. Surg. Neurol. 8:298–312, 1977.PubMedGoogle Scholar
  46. 46.
    Ortega, J., et al. Post-treatment hemodynamics of a basilar aneurysm and bifurcation. Ann. Biomed. Eng. 36(9):1531–1546, 2008.PubMedCrossRefGoogle Scholar
  47. 47.
    Ouared, R., et al. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm. Comput. Phys. Commun. 179:128–131, 2008.CrossRefGoogle Scholar
  48. 48.
    Peric, M., et al. Comparison of finite-volume numerical methods with staggered and colocated grids. Comput. Fluids 16(4):389–403, 1988.CrossRefGoogle Scholar
  49. 49.
    Rayz, V. L., et al. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Eng. 38(10):3058–3069, 2010.PubMedCrossRefGoogle Scholar
  50. 50.
    Reuvers, N., and M. Golombok. Shear rate and permeability in water flooding. Transport Porous Med. 79:249–253, 2009.CrossRefGoogle Scholar
  51. 51.
    Roach, M. R. Changes in arterial distensibility as a cause of poststenotic dilatation. Am. J. Cardiol. 12:802–815, 1963.PubMedCrossRefGoogle Scholar
  52. 52.
    Rodriguez, J. N., et al. Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms. Ann. Biomed. Eng. 40(4):883–897, 2012.PubMedCrossRefGoogle Scholar
  53. 53.
    Sadowski, T. J., and R. B. Bird. Non-Newtonian flow through porous media. I. Theoretical. T. Soc. Rheo. 9(2):243–250, 1965.CrossRefGoogle Scholar
  54. 54.
    Simkins, T. E., and W. E. Stehbens. Vibrations recorded from the adventitial surface of aneurysms and arteriovenous fistulas. Vasc. Surg. 8:153–165, 1974.PubMedGoogle Scholar
  55. 55.
    Singhal, P., et al. Ultra low density and highly crosslinked biocompatible shape memory polyurethane foams. J. Polym. Sci. Part B. Polym. Phys. 50:724–737, 2012.CrossRefGoogle Scholar
  56. 56.
    Sorensen, E. N., et al. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27:436–448, 1999.PubMedCrossRefGoogle Scholar
  57. 57.
    Sorensen, E. N., et al. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27:449–458, 1999.PubMedCrossRefGoogle Scholar
  58. 58.
    STAR-CCM+ v. 6.02.007, User Guide, CD-Adapco, http://www.cd-adapco.com.
  59. 59.
    Steiger, H. J., et al. Haemodynamic stress in lateral saccular aneurysms. Acta. Neurochir. 86:98–105, 1987.PubMedCrossRefGoogle Scholar
  60. 60.
    Tamagawa, M., and S. Matsuo. Predictions of thrombus formation using Lattice Boltzmann method (modeling adhesion force for particles to wall). JSME Int. J. C-Mech. Syst. 47(4):1027–1034, 2004.CrossRefGoogle Scholar
  61. 61.
    Ward, W. K. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes. Sci. Technol. 2(5):768–777, 2008.Google Scholar
  62. 62.
    Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.PubMedGoogle Scholar
  63. 63.
    Wootton, D. M., et al. A mechanistic model of acute platelet accumulation in thrombogenic stenosis. Ann. Biomed. Eng. 29:321–329, 2001.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhao, S. Z., et al. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33:975–984, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • J. M. Ortega
    • 1
  • J. Hartman
    • 2
  • J. N. Rodriguez
    • 3
  • D. J. Maitland
    • 3
  1. 1.Engineering Technologies DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of NeurosurgeryKaiser Permanente Medical CenterSacramentoUSA
  3. 3.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations