Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 4, pp 694–708 | Cite as

A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics

  • Fabián Riveros
  • Santanu Chandra
  • Ender A. Finol
  • T. Christian Gasser
  • Jose F. Rodriguez
Article

Abstract

Biomechanical studies on abdominal aortic aneurysms (AAA) seek to provide for better decision criteria to undergo surgical intervention for AAA repair. More accurate results can be obtained by using appropriate material models for the tissues along with accurate geometric models and more realistic boundary conditions for the lesion. However, patient-specific AAA models are generated from gated medical images in which the artery is under pressure. Therefore, identification of the AAA zero pressure geometry would allow for a more realistic estimate of the aneurysmal wall mechanics. This study proposes a novel iterative algorithm to find the zero pressure geometry of patient-specific AAA models. The methodology allows considering the anisotropic hyperelastic behavior of the aortic wall, its thickness and accounts for the presence of the intraluminal thrombus. Results on 12 patient-specific AAA geometric models indicate that the procedure is computational tractable and efficient, and preserves the global volume of the model. In addition, a comparison of the peak wall stress computed with the zero pressure and CT-based geometries during systole indicates that computations using CT-based geometric models underestimate the peak wall stress by 59 ± 64 and 47 ± 64 kPa for the isotropic and anisotropic material models of the arterial wall, respectively.

Keywords

Abdominal aortic aneurysm (AAA) Patient-specific Image-based Zero pressure geometry FEA Anisotropy 

Notes

Acknowledgments

The authors would like to acknowledge research funding from project 071/UPB10/12 from the University of Zaragoza, and from NIH grants R21EB007651, R21EB008804 and R15HL087268. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Alastrué, V., A. García, E. Peña, J. F. Rodríguez, M. Martínez, and M. Doblaré. Numerical framework for patient-specific computational modelling of vascular tissue. Commun. Numer. Methods Eng. 6:1–30, 2006.Google Scholar
  2. 2.
    Auer, M., and T. C. Gasser. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans. Med. Imaging 29(4):1022–1028, 2010.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown, L. C., and J. L. Powell. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK small aneurysm trial participants. Ann. Surg. 230(3):289–296, 1999; discussion 296–297.Google Scholar
  4. 4.
    Carlson, D. E. Inverse deformation results for elastic materials. Z. Angew. Math. Phys. 20(2):261–263, 1969.CrossRefGoogle Scholar
  5. 5.
    Chadwick, P. Application of an energy-momentum tensor in elastostatics. J. Elasticity 5:249–258, 1975.CrossRefGoogle Scholar
  6. 6.
    de Putter, S., B. J. B. M. Wolters, M. C. M. Ruttena, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40:1081–1090, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Demiray, H. A note on the elasticity of soft biological tissues. J. Biomech. 5:309–311, 1972.PubMedCrossRefGoogle Scholar
  8. 8.
    Di Martino, E. S., and D. A. Vorp. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31(7):804–809, 2003.PubMedCrossRefGoogle Scholar
  9. 9.
    DiMartino, E. S., A. Bohra, J. P. Vande Geest, N. Y. Gupta, M. S. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.CrossRefGoogle Scholar
  10. 10.
    Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37(4):724–732, 2003.PubMedCrossRefGoogle Scholar
  11. 11.
    Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36(3):589–597, 2002.PubMedCrossRefGoogle Scholar
  12. 12.
    Gasser, T. C. Bringing vascular biomechanics into clinical practice. Simulation-based decisions for elective abdominal aortic aneurysms repair. In: Patient-Specific Computational Modeling. Lecture Notes in Computational Vision and Biomechanics, edited by B. Calvo, and E. Pena. Dordrecht: Springer, 2012.Google Scholar
  13. 13.
    Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. 40:176–185, 2010.CrossRefGoogle Scholar
  14. 14.
    Gasser, T. C., S. Gallinetti, X. Xing, C. Forsell, J. Swedenborg, and J. Roy. Spatial orientation of collagen fibers in the Abdominal Aortic Aneurysm’s wall and its relation to wall mechanics. Acta Biomater. 8(8):3091–3103, 2012.PubMedCrossRefGoogle Scholar
  15. 15.
    Govindjee, S., and P. Mihalic. Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. 136:47–57, 1996.CrossRefGoogle Scholar
  16. 16.
    Govindjee, S., and P. Mihalic. Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Methods Eng. 43:821–838, 1998.CrossRefGoogle Scholar
  17. 17.
    Hans, S. S., O. Jareunpoon, B. Balasubramaniam, and G. B. Zelenock. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 41:584–588, 2005.PubMedCrossRefGoogle Scholar
  18. 18.
    Heng, M. S., M. J. Fagan, W. Collier, G. Desai, P. T. McCollum, and I. C. Chetter. Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J. Vasc. Surg. 47:17–22, 2008.PubMedCrossRefGoogle Scholar
  19. 19.
    Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: John Wiley & Sons Ltd., 2000, 455 pp.Google Scholar
  20. 20.
    Karkos, C., U. Mukhopadhyay, I. Papakostas, J. Ghosh, G. Thomson, and R. Hughes. Abdominal aortic aneurysm: the role of clinical examination and opportunistic detection. Eur. J. Vasc. Endovasc. Surg. 19:299–303, 2000.PubMedCrossRefGoogle Scholar
  21. 21.
    Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, and J. Swedenborg. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38(6):1283–1292, 2003.PubMedCrossRefGoogle Scholar
  22. 22.
    Larsson, E., F. Labruto, T. C. Gasser, J. Swedenborg, and R. Hultgren. Analysis of aortic wall stress and rupture risk in patients with abdominal aortic aneurysm with a gender perspective. J. Vasc. Surg. 54(2):295–299, 2011.PubMedCrossRefGoogle Scholar
  23. 23.
    Limet, R., N. Sakalihassan, and A. Albert. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14(4):540–548, 1991.PubMedCrossRefGoogle Scholar
  24. 24.
    Lu, J., X. Zhou, and M. L. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40:693–696, 2007.PubMedCrossRefGoogle Scholar
  25. 25.
    Maier, A., M. W. Gee, C. Reeps, J. Pongratz, H. H. Eckstein, and W. A. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. ASME J. Biomech. 131(6):061015, 2009.CrossRefGoogle Scholar
  27. 27.
    Newman, A. B., A. M. Arnold, G. L. Burke, D. H. O’Leary, and T. A. Manolio. Cardiovascular disease and mortality in older adults with small abdominal aortic aneurysms detected by ultrasonography: the cardiovascular health study. Ann. Intern. Med. 134(3):182–190, 2001.PubMedGoogle Scholar
  28. 28.
    Powell, J. T., L. C. Brown, J. F. Forbes, F. G. Fowkes, R. M. Greenhalgh, C. V. Ruckley, and S. G. Thompson. Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial. Br. J. Surg. 94:702–708, 2007.PubMedCrossRefGoogle Scholar
  29. 29.
    Raghavan, M. L., M. A. Baoshun, and M. F. Filinger. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng. 34(9):1414–1419, 2006.PubMedCrossRefGoogle Scholar
  30. 30.
    Raghavan, M. L., J. Kratzberg, E. M. Castro de Tolosa, M. M. Hanaoka, P. Walker, and E. S. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4):475–482, 2000.PubMedCrossRefGoogle Scholar
  32. 32.
    Rissland, P., Y. Alemu, J. Ricotta, and D. Blustein. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. ASME J. Biomech. 131(3):031001, 2009.CrossRefGoogle Scholar
  33. 33.
    Rodriguez, J. F., G. Martufi, M. Doblare, and E. A. Finol. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann. Biomed. Eng. 37(11):2218–2221, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Rodriguez, J. F., C. Ruiz, M. Doblaré, and G. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. ASME J. Biomech. 130(2):021023, 2008.CrossRefGoogle Scholar
  35. 35.
    Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365:1577–1589, 2005.PubMedCrossRefGoogle Scholar
  36. 36.
    Shield, R. T. Inverse deformation results in finite elasticity. Z. Angew. Math. Phys. 78:490–500, 1967.CrossRefGoogle Scholar
  37. 37.
    Shum, J., E. S. Di Martino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semi-automatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 37(2):638–648, 2010.PubMedCrossRefGoogle Scholar
  38. 38.
    Shum, J., G. Martufi, E. S. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39(1):277–286, 2011.PubMedCrossRefGoogle Scholar
  39. 39.
    Shum, J., A. Xu, I. Chatnuntawech, and E. A. Finol. A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models. Ann. Biomed. Eng. 39(1):249–259, 2011.PubMedCrossRefGoogle Scholar
  40. 40.
    Speelman, L., E. M. Bosboom, G. W. Schurink, J. Buth, M. Breeuwer, M. J. Jacobs, and F. N. van de Vosse. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J. Biomech. 42(11):1713–1719, 2009.PubMedCrossRefGoogle Scholar
  41. 41.
    Thompson, S. G., H. A. Ashton, L. Gao, R. A. P. Scott, and Multicentre Aneurysm Screening Study Group. Screening men for abdominal aortic aneurysm: 10 year mortality and cost effectiveness results from the randomised Multicentre Aneurysm Screening Study. Brit. Med. J. 338:2307, 2009.Google Scholar
  42. 42.
    Thubrikar, M. J., J. al-Soudi, and F. Robicsek. Wall stress studies of abdominal aortic aneurysm in a clinical model. Ann. Vasc. Surg. 15(3):355–366, 2001.PubMedCrossRefGoogle Scholar
  43. 43.
    Truijers, M., J. A. Pol, L. J. Schultzekool, S. M. van Sterkenburg, M. F. Fillinger, and J. D. Blankensteijn. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33(4):401–407, 2007.PubMedCrossRefGoogle Scholar
  44. 44.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39(7):1324–1334, 2006.PubMedCrossRefGoogle Scholar
  45. 45.
    Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for rupture and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28:168–176, 2004.PubMedGoogle Scholar
  46. 46.
    Vorp, D. A., M. L. Raghavan, and M. W. Webster. Wall stress studies of abdominal aortic aneurysms: influence of diameter, and asymmetry. J. Vasc. Surg. 27:632–639, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Fabián Riveros
    • 1
  • Santanu Chandra
    • 3
  • Ender A. Finol
    • 4
  • T. Christian Gasser
    • 5
  • Jose F. Rodriguez
    • 1
    • 2
  1. 1.Mechanical Engineering Department/Aragon Institute of Engineering ResearchUniversidad de ZaragozaZaragozaSpain
  2. 2.Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)ZaragozaSpain
  3. 3.Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameUSA
  4. 4.Department of Biomedical EngineeringThe University of Texas at San AntonioSan AntonioUSA
  5. 5.Department of Solid Mechanics, School of Engineering SciencesThe Royal Institute of Technology (KTH)StockholmSweden

Personalised recommendations