Annals of Biomedical Engineering

, Volume 41, Issue 4, pp 657–668 | Cite as

Vascular Remodeling in Autogenous Arterio-Venous Fistulas by MRI and CFD

  • Monica SigovanEmail author
  • Vitaliy Rayz
  • Warren Gasper
  • Hugh F. Alley
  • Christopher D. Owens
  • David Saloner


Hemodynamic parameters play an important role in regulating vascular remodeling in arterio-venous fistula (AVF) maturation. Investigating the changes in hemodynamic parameters during AVF maturation is expected to improve our understanding of fistula failure, but very little data on actual temporal changes in human AVFs is available. The present study aimed to assess the feasibility of using a noncontrast-enhanced MRI protocol combined with CFD modeling to relate hemodynamic changes to vascular remodeling following native AVF placement. MR angiography (MRA) and MR velocimetry (MRV) data was acquired peri-operatively, 1 month, and 3 months later in three patients. Vascular geometries were obtained by segmentation of the MRA images. Pulsatile flow simulations were performed in the patient specific vascular geometries with time-dependent boundary conditions prescribed from MRV measurements. A principal result of the study is the description of WSS changes over time in the same patients. The disturbed flow observed in the venous segments resulted in a variability of the WSS distribution and could be responsible for the non-uniform remodeling of the vessel. The artery did not show regions of disturbed flow upstream from the anastomosis, which would be consistent with the uniform remodeling. MRI use demonstrated the ability to provide a comprehensive evaluation of clinically relevant information for the investigation of upper extremity AVFs. 3D geometry from MRA in combination with MRV provides the opportunity to perform detailed CFD analysis of local hemodynamics in order to determine flow descriptors affecting fistula maturation.


Computational fluid dynamics Magnetic resonance imaging Vascular access Hemodialysis fistula Vascular remodeling WSS 



This work has been supported by a VA Merit award (DS), and a NIH grant NS059891 (VR).


  1. 1.
    Achneck, H. E., B. Sileshi, M. Li, E. J. Partington, D. A. Peterson, and J. H. Lawson. Surgical aspects and biological considerations of arteriovenous fistula placement. Semin. Dial. 23:25–33, 2010.PubMedCrossRefGoogle Scholar
  2. 2.
    Badero, O. J., M. O. Salifu, H. Wasse, and J. Work. Frequency of swing-segment stenosis in referred dialysis patients with angiographically documented lesions. Am. J. Kidney Dis. 51:93–98, 2008.PubMedCrossRefGoogle Scholar
  3. 3.
    Beathard, G. A., P. Arnold, J. Jackson, and T. Litchfield. Aggressive treatment of early fistula failure. Kidney Int. 64:1487–1494, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Carroll, G. T., T. M. McGloughlin, P. E. Burke, M. Egan, F. Wallis, and M. T. Walsh. Wall shear stresses remain elevated in mature arteriovenous fistulas: a case study. J. Biomech. Eng. 133:021003, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Dammers, R., J. H. Tordoir, J. P. Kooman, R. J. Welten, J. M. Hameleers, P. J. Kitslaar, and A. P. Hoeks. The effect of flow changes on the arterial system proximal to an arteriovenous fistula for hemodialysis. Ultrasound. Med. Biol. 31:1327–1333, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Dixon, B. S. Why don’t fistulas mature? Kidney Int. 70:1413–1422, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Ene-Iordache, B., L. Mosconi, L. Antiga, S. Bruno, A. Anghileri, G. Remuzzi, and A. Remuzzi. Radial artery remodeling in response to shear stress increase within arteriovenous fistula for hemodialysis access. Endothelium. 10:95–102, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Ene-Iordache, B., L. Mosconi, G. Remuzzi, and A. Remuzzi. Computational fluid dynamics of a vascular access case for hemodialysis. J. Biomech. Eng. 123:284–292, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Ene-Iordache, B., and A. Remuzzi. Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol. Dial. Transplant. 27:358–368, 2011.PubMedCrossRefGoogle Scholar
  10. 10.
    Helmke, B. P., and P. F. Davies. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30:284–296, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Hofstra, L., D. C. Bergmans, K. M. Leunissen, A. P. Hoeks, P. J. Kitslaar, M. J. Daemen, and J. H. Tordoir. Anastomotic intimal hyperplasia in prosthetic arteriovenous fistulas for hemodialysis is associated with initial high flow velocity and not with mismatch in elastic properties. J. Am. Soc. Nephrol. 6:1625–1633, 1995.PubMedGoogle Scholar
  12. 12.
    Hofstra, L., D. C. Bergmans, K. M. Leunissen, A. P. Hoeks, P. J. Kitslaar, and J. H. Tordoir. Prosthetic arteriovenous fistulas and venous anastomotic stenosis: influence of a high flow velocity on the development of intimal hyperplasia. Blood Purif. 14:345–349, 1996.PubMedCrossRefGoogle Scholar
  13. 13.
    III. NKF-K/DOQI clinical practice guidelines for vascular access: Update 2000. Am. J. Kidney Dis.37:S137–S181, 2001.Google Scholar
  14. 14.
    Kharboutly, Z., V. Deplano, E. Bertrand, and C. Legallais. Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med. Eng. Phys. 32:111–118, 2010.PubMedCrossRefGoogle Scholar
  15. 15.
    Kharboutly, Z., J. M. Treutenaere, I. Claude, and C. Legallais. Arterio-venous fistula: two cases realistic numerical blood flow simulations. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007:2980–2983, 2007.PubMedGoogle Scholar
  16. 16.
    Kheda, M. F., L. E. Brenner, M. J. Patel, J. J. Wynn, J. J. White, L. M. Prisant, S. A. Jones, and W. D. Paulson. Influence of arterial elasticity and vessel dilatation on arteriovenous fistula maturation: a prospective cohort study. Nephrol. Dial. Transplant. 25:525–531, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Krishnamoorthy, M. K., R. K. Banerjee, Y. Wang, J. Zhang, A. S. Roy, S. F. Khoury, L. J. Arend, S. Rudich, and P. Roy-Chaudhury. Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig AV fistula. Kidney Int. 74:1410–1419, 2008.PubMedCrossRefGoogle Scholar
  18. 18.
    Laissy, J. P., D. Menegazzo, M. P. Debray, A. Loshkajian, B. Viron, F. Mignon, and E. Schouman-Claeys. Failing arteriovenous hemodialysis fistulas: assessment with magnetic resonance angiography. Invest. Radiol. 34:218–224, 1999.PubMedCrossRefGoogle Scholar
  19. 19.
    Lankhaar, J. W., M. B. Hofman, J. T. Marcus, J. J. Zwanenburg, T. J. Faes, and A. Vonk-Noordegraaf. Correction of phase offset errors in main pulmonary artery flow quantification. J. Magn. Reson. Imaging. 22:73–79, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Lazo-Langner, A., G. A. Knoll, P. S. Wells, N. Carson, and M. A. Rodger. The risk of dialysis access thrombosis is related to the transforming growth factor-beta1 production haplotype and is modified by polymorphisms in the plasminogen activator inhibitor-type 1 gene. Blood. 108:4052–4058, 2006.PubMedCrossRefGoogle Scholar
  21. 21.
    Lehoux, S., and A. Tedgui. Signal transduction of mechanical stresses in the vascular wall. Hypertension. 32:338–345, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin, C. C., W. C. Yang, S. J. Lin, T. W. Chen, W. S. Lee, C. F. Chang, P. C. Lee, S. D. Lee, T. S. Su, C. S. Fann, and M. Y. Chung. Length polymorphism in heme oxygenase-1 is associated with arteriovenous fistula patency in hemodialysis patients. Kidney Int. 69:165–172, 2006.PubMedCrossRefGoogle Scholar
  23. 23.
    Lomonte, C., F. Casucci, M. Antonelli, B. Giammaria, N. Losurdo, G. Marchio, and C. Basile. Is there a place for duplex screening of the brachial artery in the maturation of arteriovenous fistulas? Semin. Dial. 18:243–246, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Markl, M., R. Bammer, M. T. Alley, C. J. Elkins, M. T. Draney, A. Barnett, M. E. Moseley, G. H. Glover, and N. J. Pelc. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn. Reson. Med. 50:791–801, 2003.PubMedCrossRefGoogle Scholar
  25. 25.
    Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28:143–156, 1998.PubMedCrossRefGoogle Scholar
  26. 26.
    Misra, S., A. A. Fu, K. D. Misra, J. F. Glockner, and D. Mukhopadhyay. Wall shear stress measurement using phase contrast magnetic resonance imaging with phase contrast magnetic resonance angiography in arteriovenous polytetrafluoroethylene grafts. Angiology. 60:441–447, 2009.PubMedCrossRefGoogle Scholar
  27. 27.
    Misra, S., D. A. Woodrum, J. Homburger, S. Elkouri, J. N. Mandrekar, V. Barocas, J. F. Glockner, D. K. Rajan, and D. Mukhopadhyay. Assessment of wall shear stress changes in arteries and veins of arteriovenous polytetrafluoroethylene grafts using magnetic resonance imaging. Cardiovasc. Intervent. Radiol. 29:624–629, 2006.PubMedCrossRefGoogle Scholar
  28. 28.
    Rayz, V. L., L. Boussel, G. Acevedo-Bolton, A. J. Martin, W. L. Young, M. T. Lawton, R. Higashida, and D. Saloner. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130:051011, 2008.PubMedCrossRefGoogle Scholar
  29. 29.
    Rayz, V. L., L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida, and D. Saloner. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36:1793–1804, 2008.PubMedCrossRefGoogle Scholar
  30. 30.
    Robbin, M. L., N. E. Chamberlain, M. E. Lockhart, M. H. Gallichio, C. J. Young, M. H. Deierhoi, and M. Allon. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology 225:59–64, 2002.PubMedCrossRefGoogle Scholar
  31. 31.
    Roy-Chaudhury, P., V. P. Sukhatme, and A. K. Cheung. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J. Am. Soc. Nephrol. 17:1112–1127, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Schirmer, C. M., and A. M. Malek. Patient based computational fluid dynamic characterization of carotid bifurcation stenosis before and after endovascular revascularization. J. Neurointerv. Surg. 4(6):448–454, 2011.PubMedCrossRefGoogle Scholar
  33. 33.
    Sivanesan, S., T. V. How, and A. Bakran. Characterizing flow distributions in AV fistulae for haemodialysis access. Nephrol. Dial. Transplant. 13:3108–3110, 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    Sivanesan, S., T. V. How, and A. Bakran. Sites of stenosis in AV fistulae for haemodialysis access. Nephrol. Dial. Transplant. 14:118–120, 1999.PubMedCrossRefGoogle Scholar
  35. 35.
    Stadler, A. F., A. Frydrychowich, M. F. Russe, J. G. Korvink, J. Hennig, K. C. Li, and M. Markl. Analysis of Reynolds, Strouhal and Womerseley numbers in the healthy thoracic aorta. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2011.Google Scholar
  36. 36.
    Suh, G. Y., A. S. Les, A. S. Tenforde, S. C. Shadden, R. L. Spilker, J. J. Yeung, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Hemodynamic changes quantified in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Eng. 39:2186–2202, 2011.PubMedCrossRefGoogle Scholar
  37. 37.
    Traub, O., and B. C. Berk. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.PubMedCrossRefGoogle Scholar
  38. 38.
    Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Hemodynamics and complications encountered with arteriovenous fistulas and grafts as vascular access for hemodialysis: a review. Ann. Biomed. Eng. 33:1142–1157, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Waldman, G. J., P. M. Pattynama, P. C. Chang, C. Verburgh, J. H. Reiber, and A. de Roos. Magnetic resonance angiography of dialysis access shunts: initial results. Magn. Reson. Imaging. 14:197–200, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Monica Sigovan
    • 1
    Email author
  • Vitaliy Rayz
    • 1
  • Warren Gasper
    • 2
  • Hugh F. Alley
    • 2
  • Christopher D. Owens
    • 2
    • 3
  • David Saloner
    • 1
    • 4
  1. 1.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Vascular SurgeryUniversity of CaliforniaSan FranciscoUSA
  3. 3.Vascular Surgery ServiceVA Medical CenterSan FranciscoUSA
  4. 4.Radiology ServiceVA Medical CenterSan FranciscoUSA

Personalised recommendations