Annals of Biomedical Engineering

, Volume 41, Issue 4, pp 795–805

Effects of Hemodialysis Therapy on Sit-to-Walk Characteristics in End Stage Renal Disease Patients

  • Rahul Soangra
  • Thurmon E. Lockhart
  • John Lach
  • Emaad M. Abdel-Rahman
Article

Abstract

Patients with end stage renal diseases (ESRD) undergoing hemodialysis (HD) have high morbidity and mortality due to multiple causes; one of which is dramatically higher fall rates than the general population. In spite of the multiple efforts aiming to decrease the high mortality and improve quality of life in ESRD patients, limited success has been achieved. If adequate interventions for fall prevention are to be achieved, the functional and mobility mechanisms consistent with falls in this population must be understood. Human movements such as sit-to-walk (STW) tasks are clinically significant, and analysis of these movements provides a meaningful evaluation of postural and locomotor performance in elderly patients with functional limitations indicative of fall risks. In order to assess the effects of HD therapy on fall risks, 22 sessions of both pre- and post-HD measurements were obtained in six ESRD patients utilizing customized inertial measurement units (IMU). IMU signals were denoised using ensemble empirical mode decomposition and Savistky-Golay filtering methods to detect relevant events for identification of STW phases. The results indicated that patients were slower to get out of the chair (as measured by trunk flexion angular accelerations, time to peak trunk flexion, and overall STW completion time) following the dialysis therapy session. STW is a frequent movement in activities of daily living, and HD therapy may influence the postural and locomotor control of these movements. The analysis of STW movement may assist in not only assessing a patient’s physical status, but in identifying HD-related fall risk as well. This preliminary study presents a non-invasive method of kinematic measurement for early detection of increased fall risk in ESRD patients using portable inertial sensors for out-patient monitoring. This can be helpful in understanding the pathogenesis better, and improve awareness in health care providers in targeting interventions to identify individuals at risk for fall.

Keywords

Locomotion Gait and posture Fall risk Gait initiation Timed Get Up & Go 

References

  1. 1.
    Abdel-Rahman, E. M., F. Turgut, K. Turkmen, and R. A. Balogun. Falls in elderly hemodialysis patients. QJM 104:829–838, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Abdel-Rahman, E. M., G. Yan, F. Turgut, and R. A. Balogun. Long-term morbidity and mortality related to falls in hemodialysis patients: role of age and gender—a pilot study. Nephron Clin. Pract. 118:c278–c284, 2011.PubMedCrossRefGoogle Scholar
  3. 3.
    Aberg, A. C., G. E. Frykberg, and K. Halvorsen. Medio-lateral stability of sit-to-walk performance in older individuals with and without fear of falling. Gait Posture 31:438–443, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Barth, A. T., M. A. Hanson, H. C. Powell Jr., and J. Lach. TEMPO 3.1: a body area sensor network platform for continuous movement assessment. International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, pp. 71–76, 2009.Google Scholar
  5. 5.
    Berchtold, M. W., H. Brinkmeier, and M. Muntener. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80:1215–1265, 2000.PubMedGoogle Scholar
  6. 6.
    Bohannon, R. W., D. Hull, and D. Palmeri. Muscle strength impairments and gait performance deficits in kidney transplant candidates. Am. J. Kidney Dis. 24:480–485, 1994.PubMedGoogle Scholar
  7. 7.
    Bouten, C. V., K. T. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 44:136–147, 1997.PubMedCrossRefGoogle Scholar
  8. 8.
    Brouns, R., and P. P. De Deyn. Neurological complications in renal failure: a review. Clin. Neurol. Neurosurg. 107:1–16, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Brunt, D., M. J. Lafferty, A. McKeon, B. Goode, C. Mulhausen, and P. Polk. Invariant characteristics of gait initiation. Am. J. Phys. Med. Rehabil. 70:206–212, 1991.PubMedCrossRefGoogle Scholar
  10. 10.
    Buckley, T., C. Pitsikoulis, E. Barthelemy, and C. J. Hass. Age impairs sit-to-walk motor performance. J. Biomech. 42:2318–2322, 2009.PubMedCrossRefGoogle Scholar
  11. 11.
    Buckley, T. A., C. Pitsikoulis, and C. J. Hass. Dynamic postural stability during sit-to-walk transitions in Parkinson disease patients. Mov. Disord. 23:1274–1280, 2008.PubMedCrossRefGoogle Scholar
  12. 12.
    CDC (Centers for Disease Control and Prevention). Center for Injury Prevention and Control. CDC, Atlanta, 2010.Google Scholar
  13. 13.
    Cook, W. L., G. Tomlinson, M. Donaldson, S. N. Markowitz, G. Naglie, B. Sobolev, and S. V. Jassal. Falls and fall-related injuries in older dialysis patients. Clin. J. Am. Soc. Nephrol. 1:1197–1204, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Debold, E. P. Recent insights into muscle fatigue at the cross-bridge level. Front Physiol. 3:151, 2012.PubMedCrossRefGoogle Scholar
  15. 15.
    Desmet, C., C. Beguin, C. Swine, M. Jadoul, and Université Catholique de Louvain Collaborative Group. Falls in hemodialysis patients: prospective study of incidence, risk factors, and complications. Am. J. Kidney Dis. 45:148–153, 2005.PubMedCrossRefGoogle Scholar
  16. 16.
    Diesel, W., T. D. Noakes, C. Swanepoel, and M. Lambert. Isokinetic muscle strength predicts maximum exercise tolerance in renal patients on chronic hemodialysis. Am. J. Kidney Dis. 16:109–114, 1990.PubMedGoogle Scholar
  17. 17.
    Dion, L., F. Malouin, B. McFadyen, and C. L. Richards. Assessing mobility and locomotor coordination after stroke with the rise-to-walk task. Neurorehabil. Neural Repair 17:83–92, 2003.PubMedCrossRefGoogle Scholar
  18. 18.
    Fahal, I. H., G. M. Bell, J. M. Bone, and R. H. T. Edwards. Physiological abnormalities of skeletal muscle in dialysis patients. Nephrol. Dial. Transplant. 12:119–127, 1997.PubMedCrossRefGoogle Scholar
  19. 19.
    Flandrin, P., G. Rilling, and P. Goncalves. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11:112–114, 2004.CrossRefGoogle Scholar
  20. 20.
    Fordyce, A. M., Z. Lalani, A. K. Songra, A. J. Hildreth, A. T. Carton, and J. E. Hawkesford. Intermaxillary fixation is not usually necessary to reduce mandibular fractures. Br. J. Oral Maxillofac. Surg. 37:52–57, 1999.PubMedCrossRefGoogle Scholar
  21. 21.
    Greene, B. R., A. O’Donovan, R. Romero-Ortuno, L. Cogan, C. N. Scanaill, and R. A. Kenny. Quantitative falls risk assessment using the timed up and go test. IEEE Trans. Biomed. Eng. 57:2918–2926, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Halliday, S. E., D. A. Winter, J. S. Frank, A. E. Patla, and F. Prince. The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture 8:8–14, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Hass, C. J., D. E. Waddell, S. L. Wolf, J. L. Juncos, and R. J. Gregor. Gait initiation in older adults with postural instability. Clin. Biomech. (Bristol, Avon.) 23:743–753, 2008.CrossRefGoogle Scholar
  24. 24.
    Headley, S., M. Germain, P. Mailloux, J. Mulhern, B. Ashworth, J. Burris, B. Brewer, B. Nindl, M. Coughlin, R. Welles, and M. Jones. Resistance training improves strength and functional measures in patients with End-Stage Renal Disease. Am. J. Kidney Dis. 40:355–364, 2002.PubMedCrossRefGoogle Scholar
  25. 25.
    Huang, N. E., Z. Shen, and S. R. Long. A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid Mech. 31:417–457, 1999.CrossRefGoogle Scholar
  26. 26.
    Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 454:903–995, 1998.CrossRefGoogle Scholar
  27. 27.
    Jassal, S. V., and W. L. Cook. Prevalence of falls among seniors maintained on hemodialysis. Int. Urol. Nephrol. 37:649–652, 2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Johansen, K. L., T. Shubert, J. Doyle, B. Soher, G. K. Sakkas, and J. A. Kent-Braun. Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int. 63:291–297, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Kerr, A., B. Durward, and K. M. Kerr. Defining phases for the sit-to-walk movement. Clin. Biomech. 19:385–390, 2004.CrossRefGoogle Scholar
  30. 30.
    Kerr, A., D. Rafferty, K. M. Kerr, and B. Durward. Timing phases of the sit-to-walk movement: validity of a clinical test. Gait Posture 26:11–16, 2007.PubMedCrossRefGoogle Scholar
  31. 31.
    Large, J., N. Gan, D. Basic, and N. Jennings. Using the timed up and go test to stratify elderly inpatients at risk of falls. Clin. Rehabil. 20:421–428, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Li, M., G. Tomlinson, G. Naglie, W. L. Cook, and S. V. Jaassal. Geriatric comorbidities, such as falls, confer an independent mortality risk to elderly dialysis patient. Nephrol. Dial. Transplant. 23(4):1–5, 2007.CrossRefGoogle Scholar
  33. 33.
    Li, M., G. Tomlinson, G. Naglie, W. L. Cook, and S. V. Jassal. Geriatric comorbidities, such as falls, confer an independent mortality risk to elderly dialysis patients. Nephrol. Dial. Transplant. 23:1396–1400, 2008.PubMedCrossRefGoogle Scholar
  34. 34.
    Lockhart, T. E., A. T. Barth, X. Zhang, R. Songra, E. Abdel-Rahman, and J. Lach. Portable, non-invasive fall risk assessment in end stage renal disease patients on hemodialysis. ACM Trans. Comput. Hum. Interact. 84–93, 2010.Google Scholar
  35. 35.
    Lockhart, T. E., and W. Shi. Effects of age on dynamic accommodation. Ergonomics 53:892–903, 2010.PubMedCrossRefGoogle Scholar
  36. 36.
    Lord, S. R., S. M. Murray, K. Chapman, B. Munro, and A. Tiedemann. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. A Biol. Sci. Med. Sci. 57:M539–M543, 2002.PubMedCrossRefGoogle Scholar
  37. 37.
    Magnan, A. Modification of the sit-to-stand task with the addition of gait initiation. Gait Posture 4:232–241, 1996.CrossRefGoogle Scholar
  38. 38.
    Mathias, S., U. S. Nayak, and B. Isaacs. Balance in elderly patients: the “get-up and go” test. Arch. Phys. Med. Rehabil. 67:387–389, 1986.PubMedGoogle Scholar
  39. 39.
    Oliver, D. Risk factors and risk assessment tools for falls in hospital in-patients: a systematic review. Age Ageing 33:122–130, 2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Painter, P., L. Carlson, S. Carey, S. Paul, and J. Myll. Physical functioning and health-related quality-of-life changes with exercise training in hemodialysis patients. Am. J. Kidney Dis. 35:482–492, 2000.PubMedCrossRefGoogle Scholar
  41. 41.
    Pate, E., M. Bhimani, K. Franks-Skiba, and R. Cooke. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J. Physiol. 486(Pt 3):689–694, 1995.PubMedGoogle Scholar
  42. 42.
    Podsiadlo, D., and S. Richardson. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39:142–148, 1991.PubMedGoogle Scholar
  43. 43.
    Saiki, J. K., N. D. Vaziri, F. Naeim, and H. Meshkinpour. Dialysis-induced changes in muscle strength. J. Dialysis 4:191–201, 1980.Google Scholar
  44. 44.
    Sharma, P. K., A. K. Songra, and S. Y. Ng. Intraoperative ultrasound-guided retrieval of an airgun pellet from the tongue: a case report. Br. J. Oral Maxillofac. Surg. 40:153–155, 2002.PubMedCrossRefGoogle Scholar
  45. 45.
    Stehman-Breen, C., A. M. Alem, D. J. Sherrard, D. L. Gillen, N. S. Weiss, S. A. Beresford, S. R. Heckbert, and C. Wong. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 58:396–399, 2000.PubMedCrossRefGoogle Scholar
  46. 46.
    Stevens, J. A., and S. Olson. Reducing falls and resulting hip fractures among older women. MMWR Recomm. Rep. 49:3–12, 2000.PubMedGoogle Scholar
  47. 47.
    Weiss, A., T. Herman, M. Plotnik, M. Brozgol, I. Maidan, N. Giladi, T. Gurevich, and J. M. Hausdorff. Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Med. Eng. Phys. 32:119–125, 2010.PubMedCrossRefGoogle Scholar
  48. 48.
    Whitney, S. L., G. F. Marchetti, A. Schade, and D. M. Wrisley. The sensitivity and specificity of the timed “Up & Go” and the dynamic gait index for self-reported falls in persons with vestibular disorders. J. Vestib. Res. 14:397–409, 2004.PubMedGoogle Scholar
  49. 49.
    Wu, Z., and N. E. Huang. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 01:1, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Rahul Soangra
    • 1
  • Thurmon E. Lockhart
    • 1
    • 2
  • John Lach
    • 3
  • Emaad M. Abdel-Rahman
    • 4
  1. 1.School of Biomedical Engineering and SciencesVirginia Tech Wake Forest UniversityBlacksburgUSA
  2. 2.Industrial & Systems EngineeringVirginia TechBlacksburgUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleUSA
  4. 4.Division of NephrologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations