Annals of Biomedical Engineering

, Volume 41, Issue 8, pp 1670–1679 | Cite as

Accelerometry Reveals Differences in Gait Variability Between Patients with Multiple Sclerosis and Healthy Controls

  • Jessie M. Huisinga
  • Martina Mancini
  • Rebecca J. St. George
  • Fay B. Horak


Variability of movement reflects important information for the maintenance of the health of the system. For pathological populations, changes in variability during gait signal the presence of abnormal motor control strategies. For persons with multiple sclerosis (PwMS), extensive gait problems have been reported including changes in gait variability. While previous studies have focused on footfall variability, the present study used accelerometers on the trunk to measure variability during walking. Thus, the purpose of this study was to examine the variability of the acceleration pattern of the upper and lower trunk in PwMS compared to healthy controls. We extracted linear and nonlinear measures of gait variability from 30 s of steady state walking for 15 PwMS and 15 age-matched healthy controls. PwMS had altered variability compared to controls with greater Lyapunov exponent in the ML (p < 0.001) and AP (p < 0.001) directions, and greater frequency dispersion in the ML direction (p = 0.034). PwMS also demonstrated greater mean velocity in the ML direction (p = 0.045) and lower root mean square of acceleration in the AP direction (p = 0.040). These findings indicate that PwMS have altered structure of variability of the trunk during gait compared to healthy controls and agree with previous findings related to changes in gait variability in PwMS.


Nonlinear Trunk Steady state Lyapunov exponent 



This study was funded by the National Multiple Sclerosis Society’s Rehabilitation Research Training Grant and the Medical Research Foundation of Oregon’s Early Clinical Investigator Award.

Conflict of interest

The authors certify that no party having a direct interest in the results of the research supporting this article has or will confer a benefit on us or on any organization with which we are associated.


  1. 1.
    Bauby, C. E., and A. D. Kuo. Active control of lateral balance in human walking. J. Biomech. 33:1433, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Benedetti, M. G., R. Piperno, L. Simoncini, P. Bonato, A. Tonini, and S. Giannini. Gait abnormalities in minimally impaired multiple sclerosis patients. Mult. Scler. (Houndmills, Basingstoke, England) 5:363, 1999.Google Scholar
  3. 3.
    Bowen, J., L. Gibbons, A. Gianas, and G. H. Kraft. Self-administered Expanded Disability Status Scale with functional system scores correlates well with a physician-administered test. Mult. Scler. 7:201–206, 2001.PubMedGoogle Scholar
  4. 4.
    Cameron, M. H., F. B. Horak, R. R. Herndon, and D. Bourdette. Imbalance in multiple sclerosis: a result of slowed spinal somatosensory conduction. Somatosensory Mot. Res. 25:113, 2008.CrossRefGoogle Scholar
  5. 5.
    Cattaneo, D., and J. Jonsdottir. Sensory impairments in quiet standing in subjects with multiple sclerosis. Mult. Scler. (Houndmills, Basingstoke, England) 15:59, 2009.Google Scholar
  6. 6.
    Cattaneo, D., C. De Nuzzo, T. Fascia, M. Macalli, I. Pisoni, and R. Cardini. Risks of falls in subjects with multiple sclerosis. Arch. Phys. Med. Rehab. 83:864, 2002.CrossRefGoogle Scholar
  7. 7.
    Cavanaugh, J. T., K. M. Guskiewicz, C. Giuliani, S. Marshall, V. S. Mercer, and N. Stergiou. Recovery of postural control after cerebral concussion: new insights using approximate entropy. J. Athl. Train. 41:305, 2006.PubMedGoogle Scholar
  8. 8.
    Chiari, L., L. Rocchi, and A. Cappello. Stabilometric parameters are affected by anthropometry and foot placement. Clin. Biomech. (Bristol, Avon) 17:666, 2002.Google Scholar
  9. 9.
    Chung, L. H., J. G. Remelius, R. E. Van Emmerik, and J. A. Kent-Braun. Leg power asymmetry and postural control in women with multiple sclerosis. Med. Sci. Sports Exerc. 40:1717, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Cowan, J. M., J. C. Rothwell, J. P. Dick, P. D. Thompson, B. L. Day, and C. D. Marsden. Abnormalities in central motor pathway conduction in multiple sclerosis. Lancet 2:304, 1984.PubMedCrossRefGoogle Scholar
  11. 11.
    Crenshaw, S.J., T.D. Royer, J.G. Richards, and D.J. Hudson. Gait variability in people with multiple sclerosis. Mult. Scler. (Houndmills, Basingstoke, England) 12:613, 2006.Google Scholar
  12. 12.
    Frohman, E. M. Multiple sclerosis. Med. Clin. North Am. 87:867, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Gehlsen, G., K. Beekman, N. Assmann, D. Winant, M. Seidle, and A. Carter. Gait characteristics in multiple sclerosis: progressive changes and effects of exercise on parameters. Arch. Phys. Med. Rehabil. 67:536, 1986.PubMedGoogle Scholar
  14. 14.
    Harbourne, R. T., and N. Stergiou. Nonlinear analysis of the development of sitting postural control. Dev. Psychobiol. 42:368, 2003.PubMedCrossRefGoogle Scholar
  15. 15.
    Harbourne, R. T., and N. Stergiou. Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. Phys. Ther. 89:267, 2009.PubMedCrossRefGoogle Scholar
  16. 16.
    Hausdorff, J. M., P. L. Purdon, C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. (Bethesda, Md.: 1985) 80:1448, 1996.Google Scholar
  17. 17.
    Henriksen, M., H. Lund, R. Moe-Nilssen, H. Bliddal, and B. Danneskiod-Samsoe. Test-retest reliability of trunk accelerometric gait analysis. Gait Posture 19:288–297, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Hong, S. L., B. Manor, and L. Li. Stance and sensory feedback influence on postural dynamics. Neurosci. Lett. 423:104, 2007.PubMedCrossRefGoogle Scholar
  19. 19.
    Huisinga, J. M., M. Filipi, and N. Stergiou. Supervised resistance training results in changes in postural control in multiple sclerosis patients. Mot. Control 16:50–63, 2011.Google Scholar
  20. 20.
    Huisinga, J. M., K. K. Schmid, M. L. Filipi, and N. Stergiou. Persons with multiple sclerosis show altered joint kinetics during walking after participating in elliptical exercise. J. Appl. Biomech. 28:249–257, 2012.PubMedGoogle Scholar
  21. 21.
    Huisinga, J. M., J. M. Yentes, M. L. Filipi, and N. Stergiou. Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci. Lett. 524:124–128, 2012.PubMedCrossRefGoogle Scholar
  22. 22.
    Iosa, M., A. Fusco, G. Morone, L. Pratesi, P. Coiro, V. Venturiero, D. De Angelis, M. Bragoni, and S. Paolucci. Assessment of upper-body dynamic stability during walking in patients with subacute stroke. J. Rehabil. Res. Dev. 49:439–450, 2012.PubMedCrossRefGoogle Scholar
  23. 23.
    Iosa, M., C. Mazza, F. Pecoraro, I. Aprile, E. Ricci, and A. Cappozzo. Control of the upper body movements during level walking in patients with facioscapulohumeral dystrophy. Gait Posture 31:68–72, 2010.PubMedCrossRefGoogle Scholar
  24. 24.
    Kaipust, J. P., J. M. Huisinga, M. Filipi, and N. Stergiou. Gait variability measures reveal differences between multiple sclerosis patients and healthy controls. Mot. Control 16:229–244, 2012.Google Scholar
  25. 25.
    Kavanagh, J. J., R. S. Barrett, and S. Morrison. Upper body accelerations during walking in healthy young and elderly men. Gait Posture 20:291–298, 2004.PubMedCrossRefGoogle Scholar
  26. 26.
    Kavanagh, J. J., and H. B. Menz. Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture 28:1–15, 2008.PubMedCrossRefGoogle Scholar
  27. 27.
    Kuo, A. Stabilization of lateral motion in passive dynamic walking. Int. J. Robot. Res. 18:917–930, 1999.CrossRefGoogle Scholar
  28. 28.
    Kurtzke, J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444, 1983.PubMedCrossRefGoogle Scholar
  29. 29.
    Lamoth, C. J., O. G. Meijer, P. I. Wuisman, J. H. van Dieen, M. F. Levin, and P. J. Beek. Pelvis-thorax coordination in the transverse plane during walking in persons with nonspecific low back pain. Spine 27:E92–E99, 2002.PubMedCrossRefGoogle Scholar
  30. 30.
    Lance, J. W. The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture. Neurology 30:1303–1313, 1980.PubMedCrossRefGoogle Scholar
  31. 31.
    Lipsitz, L. A., and A. L. Goldberger. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809, 1992.PubMedCrossRefGoogle Scholar
  32. 32.
    Marigold, D. S., and A. E. Patla. Age-related changes in gait for multi-surface terrain. Gait Posture 27:689–696, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Mazza, C., M. Iosa, F. Pecoraro, and A. Cappozzo. Control of the upper body accelerations in young and elderly women during level walking. J. Neuroeng. Rehabil. 5:30, 2008.PubMedCrossRefGoogle Scholar
  34. 34.
    Mazza, C., M. Iosa, P. Picerno, and A. Cappozzo. Gender differences in the control of the upper body accelerations during level walking. Gait Posture 29:300–303, 2009.PubMedCrossRefGoogle Scholar
  35. 35.
    Mazza, C., M. Zok, and A. Cappozzo. Head stabilization in children of both genders during level walking. Gait Posture 31:429–432, 2010.PubMedCrossRefGoogle Scholar
  36. 36.
    Moe-Nilssen, R., M. K. Aaslund, C. Hodt-Billington, and J. L. Helbostad. Gait variability measures may represent different constructs. Gait Posture 32:98–101, 2010.PubMedCrossRefGoogle Scholar
  37. 37.
    Moe-Nilssen, R., and J. L. Helbostad. Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 16:60–68, 2002.PubMedCrossRefGoogle Scholar
  38. 38.
    Moe-Nilssen, R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 2: gait analysis. Clin. Biomech. (Bristol, Avon) 13:328–335, 1998.Google Scholar
  39. 39.
    Newell, K. M. Applications of nonlinear dynamics to developmental process modeling. In: Degrees of Freedom and the Development of Center of Pressure Profiles, edited by K. M. Newell and P. M. C. Molenaar. Hillsdale, NJ: Erlbaum, 1997, p. 63.Google Scholar
  40. 40.
    Noseworthy, J. H., C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker. Multiple sclerosis. New Engl. J. Med. 343:938, 2000.PubMedCrossRefGoogle Scholar
  41. 41.
    O’Connor, S. M., and A. D. Kuo. Direction-dependent control of balance during walking and standing. J. Neurophysiol. 102:1411, 2009.PubMedCrossRefGoogle Scholar
  42. 42.
    Pincus, S. M., I. M. Gladstone, and R. A. Ehrenkranz. A regularity statistic for medical data analysis. J. Clin. Monit. 7:335, 1991.PubMedCrossRefGoogle Scholar
  43. 43.
    Pincus, S. M. Approximate entropy as a measure of system complexity. Proc. Natl Acad. Sci. USA. 88:2297, 1991.Google Scholar
  44. 44.
    Prieto, T. E., J. B. Myklebust, R. G. Hoffmann, E. G. Lovett, and B. M. Myklebust. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans. Bio-med. Eng. 43:956, 1996.CrossRefGoogle Scholar
  45. 45.
    Remelius, J. G., S. L. Jones, J. D. House, M. A. Busa, J. L. Averill, K. Sugumaran, J. A. Kent-Braun, and R. E. Van Emmerik. Gait impairments in persons with multiple sclerosis across preferred and fixed walking speeds. Arch. Phys. Med. Rehabil. 93:1637–1642, 2012.PubMedCrossRefGoogle Scholar
  46. 46.
    Rizzo, M. A., O. C. Hadjimichael, J. Preiningerova, and T. L. Vollmer. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult. Scler. 10:589–595, 2004.PubMedCrossRefGoogle Scholar
  47. 47.
    Rocchi, L., L. Chiari, and F. B. Horak. Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 73:267, 2002.PubMedCrossRefGoogle Scholar
  48. 48.
    Shumway-Cook, A., and M. H. Woollacott. Motor Control: Theory and Practical Applications. New York, NY: Lippincott Willliams & Wilkins, 2001.Google Scholar
  49. 49.
    Sosnoff, J. J., M. D. Goldman, and R. W. Motl. Real-life walking impairment in multiple sclerosis: preliminary comparison of four methods for processing accelerometry data. Mult. Scler. 16:868–877, 2010.PubMedCrossRefGoogle Scholar
  50. 50.
    Sosnoff, J. J., B. M. Sandroff, and R. W. Motl. Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 2012.Google Scholar
  51. 51.
    Spain, R. I., R. J. St George, A. Salarian, M. Mancini, J. M. Wagner, F. B. Horak, and D. Bourdette. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 2012.Google Scholar
  52. 52.
    Stergiou, N., U. H. Buzzi, M. J. Kurz, and J. Heidel. Nonlinear tools in human movement. In: Innovative analyses for human movement, edited by N. Stergiou. Human Kinetics, Champaign: IL, 2004, pp. 63–90.Google Scholar
  53. 53.
    Stergiou, N., R. Harbourne, and J. Cavanaugh. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J. Neurol. Phys. Ther. 30:120, 2006.PubMedGoogle Scholar
  54. 54.
    Van Emmerik, R. E., J. G. Remelius, M. B. Johnson, L. H. Chung, and J. A. Kent-Braun. Postural control in women with multiple sclerosis: effects of task, vision and symptomatic fatigue. Gait Posture 32:608, 2010.PubMedCrossRefGoogle Scholar
  55. 55.
    Wilhelmsen, K., S. H. Nordahl, and R. Moe-Nilssen. Attenuation of trunk acceleration during walking in patients with unilateral vestibular deficiencies. J. Vestib. Res. Equilib. Orientat. 20:439–446, 2010.Google Scholar
  56. 56.
    Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Phys. D 16:285–317, 1985.CrossRefGoogle Scholar
  57. 57.
    Wurdeman, S. R., J. M. Huisinga, M. Filipi, and N. Stergiou. Multiple sclerosis affects the frequency content in the vertical ground reaction forces during walking. Clin. Biomech. (Bristol, Avon) 26:207–212, 2011.Google Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Jessie M. Huisinga
    • 1
    • 3
  • Martina Mancini
    • 2
  • Rebecca J. St. George
    • 2
  • Fay B. Horak
    • 2
  1. 1.Landon Center on AgingUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of NeurologyOregon Health and Science UniversityBeavertonUSA
  3. 3.Landon Center on AgingKansas CityUSA

Personalised recommendations