Annals of Biomedical Engineering

, Volume 41, Issue 3, pp 527–536

Linking the Development of Ventilator-Induced Injury to Mechanical Function in the Lung

  • Bradford J. Smith
  • Kara A. Grant
  • Jason H. T. Bates
Article

Abstract

Management of ALI/ARDS involves supportive ventilation at low tidal volumes (Vt) to minimize the rate at which ventilator induced lung injury (VILI) develops while the lungs heal. However, we currently have few details to guide the minimization of VILI in the ALI/ARDS patient. The goal of the present study was to determine how VILI progresses with time as a function of the manner in which the lung is ventilated in mice. We found that the progression of VILI caused by over-ventilating the lung at a positive end-expiratory pressure of zero is accompanied by progressive increases in lung stiffness as well as the rate at which the lung derecruits over time. We were able to accurately recapitulate these findings in a computational model that attributes changes in the dynamics of recruitment and derecruitment to two populations of lung units. One population closes over a time scale of minutes following a recruitment maneuver and the second closes in a matter of seconds or less, with the relative sizes of the two populations changing as VILI develops. This computational model serves as a basis from which to link the progression of VILI to changes in lung mechanical function.

Keywords

Mouse model Lung elastance Alveolar flooding Surfactant dysfunction Computational model 

References

  1. 1.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:1301–1308, 2000.Google Scholar
  2. 2.
    Albert, S. P., J. DiRocco, G. B. Allen, J. H. T. Bates, R. Lafollette, B. D. Kubiak, J. Fischer, S. Maroney, and G. F. Nieman. The role of time and pressure on alveolar recruitment. J. Appl. Physiol. 106:757–765, 2009.PubMedCrossRefGoogle Scholar
  3. 3.
    Allen, G., and J. H. Bates. Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury. J. Appl. Physiol. 96:293–300, 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Allen, G., L. K. Lundblad, P. Parsons, and J. H. Bates. Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93:1709–1715, 2002.PubMedGoogle Scholar
  5. 5.
    Allen, G. B., T. Leclair, M. Cloutier, J. Thompson-Figueroa, and J. H. Bates. The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration. Am. J. Physiol. Lung Cell. Mol. Physiol. 292:L1580–L1589, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Bates, J. H. T. Lung Mechanics. An Inverse Modeling Approach. Cambridge: Cambridge University Press, 2009.CrossRefGoogle Scholar
  7. 7.
    Bates, J. H. T., and C. G. Irvin. Time dependence of recruitment and derecruitment in the lung: a theoretical model. J. Appl. Physiol. 93:705–713, 2002.PubMedGoogle Scholar
  8. 8.
    Cassidy, K. J., D. Halpern, B. G. Ressler, and J. B. Grotberg. Surfactant effects in model airway closure experiments. J. Appl. Physiol. 87:415–427, 1999.PubMedGoogle Scholar
  9. 9.
    Crotti, S., D. Mascheroni, P. Caironi, P. Pelosi, G. Ronzoni, M. Mondino, J. J. Marini, and L. Gattinoni. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am. J. Respir. Crit. Care Med. 164:131–140, 2001.PubMedGoogle Scholar
  10. 10.
    Fuchimukai, T., T. Fujiwara, A. Takahashi, and G. Enhorning. Artificial pulmonary surfactant inhibited by proteins. J. Appl. Physiol. 62:429–437, 1987.PubMedCrossRefGoogle Scholar
  11. 11.
    Fujioka, H., and J. B. Grotberg. Steady propagation of a liquid plug in a 2D-channel. J. Biomech. Eng. 126:567–577, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Fujioka, H., and J. B. Grotberg. Steady propagation of a surfactant laden liquid plug in a 2D-channel. Phys. Fluids 17:Art. No. 082102, 2005.Google Scholar
  13. 13.
    Gaver, III, D. P., D. Halpern, O. E. Jensen, and J. B. Grotberg. The steady motion of a semi-infinite bubble through a flexible-walled channel. J. Fluid Mech. 319:25–65, 1996.CrossRefGoogle Scholar
  14. 14.
    Gaver, III, D. P., R. W. Samsel, and J. Solway. Effects of surface tension and viscosity on airway reopening. J. Appl. Physiol. 69:74–85, 1990.PubMedGoogle Scholar
  15. 15.
    Halpern, D., and J. B. Grotberg. Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes. J. Fluid Mech. 244:615–632, 1993.CrossRefGoogle Scholar
  16. 16.
    Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:168–178, 1992.PubMedCrossRefGoogle Scholar
  17. 17.
    Heil, M. Airway closure: occluding liquid bridges in strongly buckled elastic tubes. J. Biomech. Eng. 121:487–493, 1999.PubMedCrossRefGoogle Scholar
  18. 18.
    Holm, B. A., and R. H. Notter. Effects of hemoglobin and cell-membrane lipids on pulmonary surfactant activity. J. Appl. Physiol. 63:1434–1442, 1987.PubMedGoogle Scholar
  19. 19.
    Holm, B. A., R. H. Notter, and J. N. Finkelstein. Surface property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem. Phys. Lipids 38:287–298, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Howell, P. D., S. L. Waters, and J. B. Grotberg. The propagation of a liquid bolus along a liquid-lined flexible tube. J. Fluid Mech. 406:309–335, 2000.CrossRefGoogle Scholar
  21. 21.
    Ma, B., and J. H. T. Bates. Modeling the complex dynamics of derecruitment in the lung. Ann. Biomed. Eng. 38:3466–3477, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Massa, C. B., G. B. Allen, and J. H. T. Bates. Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. J. Appl. Physiol. 105:1813–1821, 2008.PubMedCrossRefGoogle Scholar
  23. 23.
    Matthay, M. A., S. Bhattacharya, D. Gaver, L. B. Ware, L. H. Lim, O. Syrkina, F. Eyal, and R. Hubmayr. Ventilator-induced lung injury: in vivo and in vitro mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 283:L678–L682, 2002.PubMedGoogle Scholar
  24. 24.
    Matthay, M. A., L. B. Ware, and G. A. Zimmerman. The acute respiratory distress syndrome. J. Clin. Investig. 122:2731–2740, 2012.PubMedCrossRefGoogle Scholar
  25. 25.
    Naureckas, E. T., C. A. Dawson, B. S. Gerber, D. P. Gaver, III, H. L. Gerber, J. H. Linehan, J. Solway, and R. W. Samsel. Airway reopening pressure in isolated rat lungs. J. Appl. Physiol. 75:1323–1333, 1994.Google Scholar
  26. 26.
    Nelder, J. A., and R. Mead. A simplex method for function minimization. Comput. J. 7:308–313, 1965.CrossRefGoogle Scholar
  27. 27.
    Pavone, L., S. Albert, J. DiRocco, L. Gatto, and G. Nieman. Alveolar instability caused by mechanical ventilation initially damages the nondependent normal lung. Crit. Care 11:R104, 2007.PubMedCrossRefGoogle Scholar
  28. 28.
    Pavone, L. A., S. Albert, D. Carney, L. A. Gatto, J. M. Halter, and G. F. Nieman. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics. Crit. Care 11:1–9, 2007.Google Scholar
  29. 29.
    Pelosi, P., M. Goldner, A. McKibben, A. Adams, G. Eccher, P. Caironi, S. Losappio, L. Gattinoni, and J. J. Marini. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am. J. Respir. Crit. Care 164:122–130, 2001.Google Scholar
  30. 30.
    Perun, M. L., and D. P. Gaver III. An experimental model investigation of the opening of a collapsed untethered pulmonary airway. J. Biomech. Eng. 117:245–253, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Perun, M. L., and D. P. Gaver III. The interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening. J. Appl. Physiol. 75:1717–1728, 1995.Google Scholar
  32. 32.
    Salazar, E., and J. H. Knowles. An analysis of pressure-volume characteristics of the lungs. J. Appl. Physiol. 19:97–104, 1964.PubMedGoogle Scholar
  33. 33.
    Schuessler, T. F., and J. H. Bates. A computer-controlled research ventilator for small animals: design and evaluation. IEEE Trans. Biomed. Eng. 42:860–866, 1995.PubMedCrossRefGoogle Scholar
  34. 34.
    Seah, A. S., K. A. Grant, M. Aliyeva, G. B. Allen, and J. H. T. Bates. Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury. Ann. Biomed. Eng. 39:1505–1516, 2011.PubMedCrossRefGoogle Scholar
  35. 35.
    Seeger, W., G. Stohr, H. R. D. Wolf, and H. Neuhof. Alteration of surfactant function due to protein leakage—special interaction with fibrin monomer. J. Appl. Physiol. 58:326–338, 1985.PubMedGoogle Scholar
  36. 36.
    Smith, B. J., E. Yamaguchi, and D. P. Gaver III. A translating stage system for μ-PIV measurements surrounding the tip of a migrating semi-infinite bubble. Meas. Sci. Technol. 21:015401, 2010.PubMedCrossRefGoogle Scholar
  37. 37.
    Zheng, Y., J. C. Anderson, V. Suresh, and J. B. Grotberg. Effect of gravity on liquid plug transport through an airway bifurcation model. J. Biomech. Eng. Trans. ASME 127:798–806, 2005.CrossRefGoogle Scholar
  38. 38.
    Zheng, Y., H. Fujioka, J. C. Grotberg, and J. B. Grotberg. Effects of inertia and gravity on liquid plug splitting at a bifurcation. J. Biomech. Eng. 128:707–716, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Bradford J. Smith
    • 1
  • Kara A. Grant
    • 1
  • Jason H. T. Bates
    • 1
  1. 1.Vermont Lung CenterUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations