Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 3, pp 562–576 | Cite as

Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis

  • Kibaek Lee
  • Junjun Zhu
  • Judy Shum
  • Yongjie Zhang
  • Satish C. Muluk
  • Ankur Chandra
  • Mark K. Eskandari
  • Ender A. Finol
Article

Abstract

An abdominal aortic aneurysm (AAA) carries one of the highest mortality rates among vascular diseases when it ruptures. To predict the role of surface curvature in rupture risk assessment, a discriminatory analysis of aneurysm geometry characterization was conducted. Data was obtained from 205 patient-specific computed tomography image sets corresponding to three AAA population subgroups: patients under surveillance, those that underwent elective repair of the aneurysm, and those with an emergent repair. Each AAA was reconstructed and their surface curvatures estimated using the biquintic Hermite finite element method. Local surface curvatures were processed into ten global curvature indices. Statistical analysis of the data revealed that the L2-norm of the Gaussian and Mean surface curvatures can be utilized as classifiers of the three AAA population subgroups. The application of statistical machine learning on the curvature features yielded 85.5% accuracy in classifying electively and emergent repaired AAAs, compared to a 68.9% accuracy obtained by using maximum aneurysm diameter alone. Such combination of non-invasive geometric quantification and statistical machine learning methods can be used in a clinical setting to assess the risk of rupture of aneurysms during regular patient follow-ups.

Keywords

Surface curvature Reconstruction Finite element method Rupture risk Geometry quantification Abdominal aortic aneurysm Machine learning 

Notes

Acknowledgments

The authors would like to acknowledge research funding from the Korean Government Scholarship Program for Study Overseas, and the Vlahakis Graduate Fellowship program. This work was also funded in part by NIH grants R21EB007651, R21EB008804 and R15HL087268. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors would like to thank Drs. Michael Sacks and David Smith for their insightful discussions on the basics of the BQFE method and its implementation for surface curvature analysis.

References

  1. 1.
    Batchelor, P. G., A. D. Castellano Smith, D. L. Hill, D. J. Hawkes, T. C. Cox, and A. F. Dean. Measures of folding applied to the development of the human fetal brain. IEEE Trans. Med. Imaging 21:953–965, 2002.PubMedCrossRefGoogle Scholar
  2. 2.
    Brady, A. R., S. G. Thompson, F. G. Fowkes, R. M. Greenhalgh, and J. T. Powell. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110(1):16–21, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Giannoglou, G., G. Giannakoulas, J. Soulis, Y. Chatzizisis, T. Perdikides, N. Melas, et al. Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion. Angiology 57:487–494, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Greenhalgh, R. M., L. C. Brown, G. P. Kwong, J. T. Powell, and S. G. Thompson. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 364:843–848, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Holt, P. J. E., J. D. Poloniecki, I. M. Loftus, J. A. Michaels, and M. M. Thompson. Epidemiological study of the relationship between volume and outcome after abdominal aortic aneurysm surgery in the UK from 2000 to 2005. Br. J. Surg. 94(4):441–448, 2007.PubMedCrossRefGoogle Scholar
  7. 7.
    Kultangwattana, W., K. Somkantha, and P. Phuangsuwan. Diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging images. World Acad. Sci. Eng. Technol. 53:648, 2009.Google Scholar
  8. 8.
    Lederle, F. A., S. E. Wilson, G. R. Johnson, D. B. Reinke, F. N. Littooy, et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Engl. J. Med. 346:1437–1444, 2002.PubMedCrossRefGoogle Scholar
  9. 9.
    Leung, J., R. D. Nyilas, S. M. L. Ng, and X. Y. Xu. Towards a new geometric approach to assess the risk of rupture of abdominal aortic aneurysms using patient specific modeling. In: Proceedings of the 2005 Summer Bioengineering Conference. Abstract SBC2005-I21.Google Scholar
  10. 10.
    Limet, R., N. Sakalihasan, and A. Albert. Determination of the expansion rate and the incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14:540–548, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Ma, B., R. E. Harbaugh, and M. L. Raghavan. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32:264–273, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Mark, H., F. Eibe, H. Geoffrey, P. Bernhard, R. Peter, and H. W. Ian. The WEKA data mining software: an update. SIGKDD Explor. 11(1):10–18, 2009.CrossRefGoogle Scholar
  13. 13.
    Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131(6):061015, 2009.PubMedCrossRefGoogle Scholar
  14. 14.
    Nielsen, P. M. F., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260:1365–1389, 1991.Google Scholar
  15. 15.
    Pappu, S., A. Dardik, H. Tagare, and R. J. Gusberg. Beyond fusiform and saccular: a novel quantitative tortuosity index may help classify aneurysm shape and predict aneurysm rupture potential. Ann. Vasc. Surg. 22:88–97, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J. Biomech. Eng. 123(2):134–144, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Raghavan, M. L., B. Ma, and R. E. Harbaugh. Quantified aneurysm shape and rupture risk. J. Neurosurg. 102:355–362, 2005.PubMedCrossRefGoogle Scholar
  18. 18.
    Sacks, M. S., C. J. Chuong, G. H. Templeton, and R. Peshock. In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann. Biomed. Eng. 21:263–275, 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    Sacks, M. S., D. A. Vorp, M. L. Raghavan, M. P. Federle, and M. W. Webster. In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann. Biomed. Eng. 27:469–479, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365(9470):1577–1589, 2004.CrossRefGoogle Scholar
  21. 21.
    Sander, P. T., and S. W. Zucker. Inferring surfaces trace and differential structure from 3-D images. IEEE Trans. Pattern Anal. Mach. Intell. 12(9):833–854, 1990.CrossRefGoogle Scholar
  22. 22.
    Scott, R. A. P., H. A. Ashton, M. J. Buxton, N. E. Day, L. G. Kim, T. M. Marteau, S. G. Thomspon, N. M. Walker, and M. A. S. Stu. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomised controlled trial. Lancet 360(9345):1531–1539, 2002.PubMedCrossRefGoogle Scholar
  23. 23.
    Shum, J., E. S. Di Martino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, G. Martufi, and E. A. Finol. Semi-automatic vessel wall detection and quantification of wall thickness in CT images of human abdominal aortic aneurysms. Med. Phys. 37:638–648, 2010.PubMedCrossRefGoogle Scholar
  24. 24.
    Shum, J., G. Martufi, E. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39(1):277–286, 2011.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith, D. B., M. S. Sacks, D. A. Vorp, and M. Thornton. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28:598–611, 2000.PubMedCrossRefGoogle Scholar
  26. 26.
    The UK Small Aneurysm Trial Participants. Mortality results for randomized controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 352:1649–1655, 1998.CrossRefGoogle Scholar
  27. 27.
    Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Surg. 28:168–176, 2004.Google Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Kibaek Lee
    • 1
  • Junjun Zhu
    • 1
  • Judy Shum
    • 2
  • Yongjie Zhang
    • 1
  • Satish C. Muluk
    • 3
  • Ankur Chandra
    • 4
  • Mark K. Eskandari
    • 5
  • Ender A. Finol
    • 6
  1. 1.Mechanical Engineering DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.Biomedical Engineering DepartmentCarnegie Mellon UniversityPittsburghUSA
  3. 3.Division of Vascular Surgery, Allegheny-Singer Research InstituteWest Penn Allegheny Health SystemPittsburghUSA
  4. 4.Division of Vascular Surgery, Rochester Institute of TechnologyUniversity of Rochester School of Medicine, and DentistryRochesterUSA
  5. 5.Division of Vascular SurgeryNorthwestern University Feinberg School of MedicineChicagoUSA
  6. 6.Department of Biomedical EngineeringThe University of Texas at San AntonioSan AntonioUSA

Personalised recommendations