Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 3, pp 619–629 | Cite as

Irreversible Electroporation: An In Vivo Study with Dorsal Skin Fold Chamber

  • Zhenpeng Qin
  • Jing Jiang
  • Gary Long
  • Bruce Lindgren
  • John C. Bischof
Article

Abstract

Irreversible electroporation (IRE) has been proposed to destroy large amounts of tumorous tissue and shows advantages over thermal therapies. Unfortunately, carefully constructed studies assessing impact in in vivo tumor systems and a direct comparison of IRE with thermal therapy are lacking. In this study, we investigate the effect of IRE in a human prostate cancer (LNCaP) grown in a thin, essentially two-dimensional, dorsal skin fold chamber system. Detailed experimental characterizations of the electrical and thermal responses of the tissue were performed yielding the first thermal response measurement in vivo of its kind that we are aware of. The interaction and coupling of electrical and thermal responses were further discussed. The threshold of the tumor injury was determined for human prostate tumor model, and the threshold value (600–1300 V cm−1) is dependent on the IRE parameters including pulse duration and pulse number. This dependence was explained in the context of tissue electrical conductivity change during IRE. Further, the thermal injury was found not to be a dominant factor in IRE with our system, which is in agreement with previous numerical studies. Finally, it appears that the local electrical heterogeneity of the tumor tissue reduces the effectiveness of IRE in some sections of the tumor (leading to live tumor patches).

Keywords

Irreversible electroporation DSFC Cancer treatment Thermal therapy Electropermeabilization 

Notes

Acknowledgments

This study was supported by Ethicon Endo-Surgery Inc. JCB was supported by a McKnight Distinguished Professorship and the Carl and Janet Kuhrmeyer Chair of Mechanical Engineering from the University of Minnesota.

Supplementary material

10439_2012_686_MOESM1_ESM.pdf (19 kb)
Supplementary material 1 (PDF 19 kb)

References

  1. 1.
    Al-Sakere, B., F. Andre, C. Bernat, E. Connault, P. Opolon, R. V. Davalos, B. Rubinsky, and L. M. Mir. Tumor ablation with irreversible electroporation. PLoS ONE 2:e1135, 2007.PubMedCrossRefGoogle Scholar
  2. 2.
    Appelbaum, L., E. Ben-David, J. Sosna, Y. Nissenbaum, and S. N. Goldberg. US findings after irreversible electroporation ablation: radiologic–pathologic correlation. Radiology 262:117–125, 2012.PubMedCrossRefGoogle Scholar
  3. 3.
    Arena, C., M. Sano, J. Rossmeisl, J. Caldwell, P. Garcia, M. Rylander, and R. Davalos. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed. Eng. Online 10:102, 2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Arena, C. B., M. B. Sano, M. N. Rylander, and R. V. Davalos. Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans. Biomed. Eng. 58:1474–1482, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Bagla, S., and D. Papadouris. Percutaneous irreversible electroporation of surgically unresectable pancreatic cancer: a case report. J. Vasc. Interv. Radiol. 23:142–145, 2012.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhowmick, S., N. E. Hoffmann, and J. C. Bischof. Thermal therapy of prostate tumor tissue in the dorsal skin flap chamber. Microvasc. Res. 64:170–173, 2002.PubMedCrossRefGoogle Scholar
  7. 7.
    Chao, B. H., X. He, and J. C. Bischof. Pre-treatment inflammation induced by TNF-alpha augments cryosurgical injury on human prostate cancer. Cryobiology 49:10–27, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Davalos, R. V., I. L. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.PubMedCrossRefGoogle Scholar
  9. 9.
    Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61:99–107, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Deodhar, A., T. Dickfeld, G. W. Single, W. C. Hamilton, Jr., R. H. Thornton, C. T. Sofocleous, M. Maybody, M. Gonen, B. Rubinsky, and S. B. Solomon. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. AJR Am. J. Roentgenol. 196:W330–W335, 2011.PubMedCrossRefGoogle Scholar
  11. 11.
    Deodhar, A., S. Monette, G. W. Single, Jr., W. C. Hamilton, Jr., R. Thornton, M. Maybody, J. A. Coleman, and S. B. Solomon. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 77:754–760, 2011.PubMedCrossRefGoogle Scholar
  12. 12.
    Duck, F. A. Physical Properties of Tissue: A Comprehensive Reference Book. New York: Academic Press, 1990.Google Scholar
  13. 13.
    Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53:1409–1415, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Ellis, T. L., P. A. Garcia, J. H. Rossmeisl, Jr., N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation. J. Neurosurg. 114:681–688, 2011.PubMedCrossRefGoogle Scholar
  15. 15.
    Garcia, P. A., J. H. Rossmeisl, Jr., R. E. Neal, II, T. L. Ellis, and R. V. Davalos. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed. Eng. Online 10:34, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236:127–136, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Goel, R., D. Swanlund, J. Coad, G. F. Paciotti, and J. C. Bischof. TNF-alpha-based accentuation in cryoinjury—dose, delivery, and response. Mol. Cancer Ther. 6:2039–2047, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Guo, Y., Y. Zhang, R. Klein, G. M. Nijm, A. V. Sahakian, R. A. Omary, G. Y. Yang, and A. C. Larson. Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma. Cancer Res. 70:1555–1563, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31:355–421, 2003.PubMedCrossRefGoogle Scholar
  20. 20.
    Ivorra, A., B. Al-Sakere, B. Rubinsky, and L. M. Mir. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys. Med. Biol. 54:5949–5963, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Ivorra, A., and B. Rubinsky. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 70:287–295, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Jiang, J., R. Goel, M. A. Iftekhar, R. Visaria, J. D. Belcher, G. M. Vercellotti, and J. C. Bischof. Tumor necrosis factor-alpha-induced accentuation in cryoinjury: mechanisms in vitro and in vivo. Mol. Cancer Ther. 7:2547–2555, 2008.PubMedCrossRefGoogle Scholar
  23. 23.
    Jiang, J., R. Goel, S. Schmechel, G. Vercellotti, C. Forster, and J. Bischof. Pre-conditioning cryosurgery: cellular and molecular mechanisms and dynamics of TNF-α enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology 61:280–288, 2010.PubMedCrossRefGoogle Scholar
  24. 24.
    Kingham, T. P., A. M. Karkar, M. I. D’Angelica, P. J. Allen, R. P. DeMatteo, G. I. Getrajdman, C. T. Sofocleous, S. B. Solomon, W. R. Jarnagin, and Y. Fong. Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J. Am. Coll. Surg. 215:379–387, 2012.PubMedCrossRefGoogle Scholar
  25. 25.
    Markelc, B., E. Bellard, G. Sersa, S. Pelofy, J. Teissie, A. Coer, M. Golzio, and M. Cemazar. In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice. J. Membr. Biol. 245:545–554, 2012.PubMedCrossRefGoogle Scholar
  26. 26.
    Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta 1523:73–83, 2000.PubMedCrossRefGoogle Scholar
  27. 27.
    Miller, L., J. Leor, and B. Rubinsky. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4:699–705, 2005.PubMedGoogle Scholar
  28. 28.
    Moldovan, D., D. Pinisetty, and R. V. Devireddy. Molecular dynamics simulation of pore growth in lipid bilayer membranes in the presence of edge-active agents. Appl. Phys. Lett. 91:204104, 2007.CrossRefGoogle Scholar
  29. 29.
    Neal, 2nd, R. E., P. A. Garcia, J. L. Robertson, and R. V. Davalos. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59:1076–1085, 2012.PubMedCrossRefGoogle Scholar
  30. 30.
    Neal, R. E., J. H. Rossmeisl, P. A. Garcia, O. I. Lanz, N. Henao-Guerrero, and R. V. Davalos. Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J. Clin. Oncol. 29:e372–e377, 2011.PubMedCrossRefGoogle Scholar
  31. 31.
    Neal, 2nd, R. E., R. Singh, H. C. Hatcher, N. D. Kock, S. V. Torti, and R. V. Davalos. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res. Treat. 123:295–301, 2010.PubMedCrossRefGoogle Scholar
  32. 32.
    Onik, G., P. Mikus, and B. Rubinsky. Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6:295–300, 2007.PubMedGoogle Scholar
  33. 33.
    Pavselj, N., Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir, and D. Miklavcic. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans. Biomed. Eng. 52:1373–1381, 2005.PubMedCrossRefGoogle Scholar
  34. 34.
    Pech, M., A. Janitzky, J. J. Wendler, C. Strang, S. Blaschke, O. Dudeck, J. Ricke, and U. B. Liehr. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc. Intervent. Radiol. 34:132–138, 2011.PubMedCrossRefGoogle Scholar
  35. 35.
    Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6:37–48, 2007.PubMedGoogle Scholar
  36. 36.
    Rydeen, C. Hyperthermic Injury of Prostate Cancer Cells. Minneapolis: University of Minnesota, 2012.Google Scholar
  37. 37.
    Sano, M. B., R. E. Neal, 2nd, P. A. Garcia, D. Gerber, J. Robertson, and R. V. Davalos. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed. Eng. Online 9:83, 2010.PubMedCrossRefGoogle Scholar
  38. 38.
    Sapareto, S. A., L. E. Hopwood, W. C. Dewey, M. R. Raju, and J. W. Gray. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res. 38:393–400, 1978.PubMedGoogle Scholar
  39. 39.
    Satterthwaite, F. E. An approximate distribution of estimates of variance components. Biometrics Bull. 2:110–114, 1946.CrossRefGoogle Scholar
  40. 40.
    Sel, D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavcic. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52:816–827, 2005.PubMedCrossRefGoogle Scholar
  41. 41.
    Shafiee, H., P. A. Garcia, and R. V. Davalos. A preliminary study to delineate irreversible electroporation from thermal damage using the arrhenius equation. J. Biomech. Eng. 131:074509, 2009.PubMedCrossRefGoogle Scholar
  42. 42.
    Shenoi, M. Nanoparticle Preconditioning for Enhanced Thermal Therapies in Cancer. Ph.D Dissertation. Minneapolis: University of Minnesota, 2011.Google Scholar
  43. 43.
    Thomson, K. R., W. Cheung, S. J. Ellis, D. Federman, H. Kavnoudias, D. Loader-Oliver, S. Roberts, P. Evans, C. Ball, and A. Haydon. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 22:611–621, 2011.PubMedCrossRefGoogle Scholar
  44. 44.
    Tracy, C. R., W. Kabbani, and J. A. Cadeddu. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 107:1982–1987, 2011.PubMedCrossRefGoogle Scholar
  45. 45.
    Weaver, J. Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 28:24–33, 2000.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Zhenpeng Qin
    • 1
  • Jing Jiang
    • 2
  • Gary Long
    • 5
  • Bruce Lindgren
    • 4
  • John C. Bischof
    • 1
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Urological SurgeryUniversity of MinnesotaMinneapolisUSA
  4. 4.Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA
  5. 5.Ethicon Endo-Surgery, IncCincinnatiUSA

Personalised recommendations