Annals of Biomedical Engineering

, Volume 41, Issue 8, pp 1740–1747 | Cite as

Footfall Placement Variability and Falls in Multiple Sclerosis

  • Michael J. Socie
  • Brian M. Sandroff
  • John H. Pula
  • Elizabeth T. Hsiao-Wecksler
  • Robert W. Motl
  • Jacob J. Sosnoff
Article

Abstract

Gait variability (i.e., fluctuations in walking) provides unique information about the control of movement and is associated with falls. This investigation examined the association between gait variability and falls in persons with multiple sclerosis (MS) and healthy controls. Traditional distributional metrics of gait variability (i.e., coefficient of variation (CV)) and a novel metric based on Fourier series analysis of footfall placement variability were determined for 41 individuals with MS and 20 age- and sex-matched controls. Spatiotemporal parameters of gait were collected using a 7.9 m electronic walkway that recorded individual footfalls during steady state comfortable walking. Persons with MS were divided into two groups based on fall history (non-fallers and recurrent fallers). Overall, persons with MS had greater gait variability than controls as indexed by CV and Fourier-based variability (p’s < 0.05). Moreover, recurrent fallers with MS had greater Fourier-based variability than non-fallers with MS (p = 0.025), whereas there was no difference in MS groups in traditional gait variability metrics (p > 0.05). These observations highlight that footfall placement variability is related to fall status in MS. Future work determining the sensitivity of footfall placement variability to dysfunction is warranted.

Keywords

Gait variability Recurrent falls Fourier series Gait impairment 

Notes

Acknowledgments

This investigation was funded in part by the OSF foundation, who took no role in experimental design or manuscript preparation. The authors would also like to thank members of the Motor Control and Exercise Neuroscience research laboratories at the University of Illinois for their contributions towards data collection.

Conflict of interest

None.

References

  1. 1.
    Balantrapu, S., B. M. Sandroff, J. J. Sosnoff, and R. W. Motl. Perceived impact of spasticity is associated with spatial and temporal parameters of gait in multiple sclerosis. ISRN Neurol. 2012:675431, 2012.PubMedGoogle Scholar
  2. 2.
    Bethoux, F., and S. E. Bennett. Evaluating walking in patients with multiple sclerosis. Int. J. Mult. Scler. Care 13:4–14, 2011.CrossRefGoogle Scholar
  3. 3.
    Brach, J. S., J. Berlin, J. VanSwearingen, A. Newman, and S. Studenski. Too much or too little step width variability is associated with a fall history only in older persons who walk at or near normal gait speed. J. Am. Geriatr. Soc. 53:S133–S134, 2005.Google Scholar
  4. 4.
    Broekmans, T., D. Gijbels, B. O. Eijnde, et al. The relationship between upper leg muscle strength and walking capacity in persons with multiple sclerosis. Mult. Scler., 2012 (in press).Google Scholar
  5. 5.
    Callisaya, M. L., L. Blizzard, J. L. McGinley, M. D. Schmidt, and V. K. Srikanth. Sensorimotor factors affecting gait variability in older people—a population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 65:386–392, 2010.PubMedCrossRefGoogle Scholar
  6. 6.
    Callisaya, M. L., L. Blizzard, M. D. Schmidt, et al. Gait, gait variability and the risk of multiple incident falls in older people: a population-based study. Age Ageing 40:481–487, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Chau, T., S. Young, and S. Redekop. Managing variability in the summary and comparison of gait data. J. Neuroeng. Rehabil. 2:22, 2005.PubMedCrossRefGoogle Scholar
  8. 8.
    Chee, J. N., W. H. Gage, W. E. McIlroy, and K. F. Zabjek. Foot placement patterns of female rollator users with multiple sclerosis in the community. Disabil. Rehabil., 2012 (in press).Google Scholar
  9. 9.
    Chiaravalloti, N. D., and J. DeLuca. Cognitive impairment in multiple sclerosis. Lancet Neurol. 7:1139–1151, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Crenshaw, S. J., T. D. Royer, J. G. Richards, and D. J. Hudson. Gait variability in people with multiple sclerosis. Mult. Scler. 12:613–619, 2006.PubMedCrossRefGoogle Scholar
  11. 11.
    Day, K. V., S. A. Kautz, S. S. Wu, S. P. Suter, and A. L. Behrman. Foot placement variability as a walking balance mechanism post-spinal cord injury. Clin. Biomech. (Bristol, Avon) 27:145–150, 2012.CrossRefGoogle Scholar
  12. 12.
    DiBerardino, 3rd, L. A., J. D. Polk, K. S. Rosengren, J. B. Spencer-Smith, and E. T. Hsiao-Wecksler. Quantifying complexity and variability in phase portraits of gait. Clin. Biomech. (Bristol, Avon) 25:552–556, 2010.CrossRefGoogle Scholar
  13. 13.
    Finlayson, M. L., E. W. Peterson, and C. C. Cho. Risk factors for falling among people aged 45 to 90 years with multiple sclerosis. Arch. Phys. Med. Rehabil. 87:1274–1279, 2006; (quiz 1287).PubMedCrossRefGoogle Scholar
  14. 14.
    Franchak, J. M., E. C. Celano, and K. E. Adolph. Perception of passage through openings depends on the size of the body in motion. Exp. Brain Res. 223:301–310, 2012.PubMedCrossRefGoogle Scholar
  15. 15.
    Gianfrancesco, M. A., E. W. Triche, J. A. Fawcett, M. P. Labas, T. S. Patterson, and A. C. Lo. Speed- and cane-related alterations in gait parameters in individuals with multiple sclerosis. Gait Posture 33:140–142, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Godi, M., A. Nardone, and M. Schieppati. Curved walking in hemiparetic patients. J. Rehabil. Med. 42:858–865, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Hausdorff, J. M. Gait variability: methods, modeling and meaning. J. Neuroeng. Rehabil. 2:19, 2005.PubMedCrossRefGoogle Scholar
  18. 18.
    Hausdorff, J. M. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 19:026113, 2009.PubMedCrossRefGoogle Scholar
  19. 19.
    Hausdorff, J. M., D. A. Rios, and H. K. Edelberg. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82:1050–1056, 2001.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaipust, J. P., J. M. Huisinga, M. Filipi, and N. Stergiou. Gait variability measures reveal differences between multiple sclerosis patients and healthy controls. Mot. Control 16:229–244, 2012.Google Scholar
  21. 21.
    Kasser, S. L., J. V. Jacobs, J. T. Foley, B. J. Cardinal, and G. F. Maddalozzo. A prospective evaluation of balance, gait, and strength to predict falling in women with multiple sclerosis. Arch. Phys. Med. Rehabil. 92:1840–1846, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Kurtzke, J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452, 1983.PubMedCrossRefGoogle Scholar
  23. 23.
    Larocca, N. G. Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners. Patient 4:189–201, 2011.PubMedCrossRefGoogle Scholar
  24. 24.
    Matsuda, P. N., A. Shumway-Cook, A. M. Bamer, S. L. Johnson, D. Amtmann, and G. H. Kraft. Falls in multiple sclerosis. PMR 3:624–632, 2011; (quiz 632).Google Scholar
  25. 25.
    Moe-Nilssen, R., M. K. Aaslund, C. Hodt-Billington, and J. L. Helbostad. Gait variability measures may represent different constructs. Gait Posture 32:98–101, 2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Prosperini, L., A. Kouleridou, N. Petsas, et al. The relationship between infratentorial lesions, balance deficit and accidental falls in multiple sclerosis. J. Neurol. Sci. 304:55–60, 2011.PubMedCrossRefGoogle Scholar
  27. 27.
    Roos, P. E., and J. B. Dingwell. Influence of simulated neuromuscular noise on movement variability and fall risk in a 3D dynamic walking model. J. Biomech. 43:2929–2935, 2010.PubMedCrossRefGoogle Scholar
  28. 28.
    Sacco, R., R. Bussman, P. Oesch, J. Kesselring, and S. Beer. Assessment of gait parameters and fatigue in MS patients during inpatient rehabilitation: a pilot trial. J. Neurol. 258:889–894, 2011.PubMedCrossRefGoogle Scholar
  29. 29.
    Shin, S., R. J. Valentine, E. M. Evans, and J. J. Sosnoff. Lower extremity muscle quality and gait variability in older adults. Age Ageing 41:595–599, 2012.PubMedCrossRefGoogle Scholar
  30. 30.
    Sosnoff, J. J., E. Gappmaier, A. Frame, and R. W. Motl. Influence of spasticity on mobility and balance in persons with multiple sclerosis. J. Neurol. Phys. Ther. 35:129–132, 2011.PubMedGoogle Scholar
  31. 31.
    Sosnoff, J. J., M. D. Goldman, and R. W. Motl. Real-life walking impairment in multiple sclerosis: preliminary comparison of four methods for processing accelerometry data. Mult. Scler. 16:868–877, 2010.PubMedCrossRefGoogle Scholar
  32. 32.
    Sosnoff, J. J., B. M. Sandroff, and R. W. Motl. Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 36:154–156, 2012.PubMedCrossRefGoogle Scholar
  33. 33.
    Sosnoff, J. J., M. J. Socie, M. K. Boes, et al. Mobility, balance and falls in persons with multiple sclerosis. PLoS ONE 6:e28021, 2011.PubMedCrossRefGoogle Scholar
  34. 34.
    Stergiou, N., and L. M. Decker. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30:869–888, 2011.PubMedCrossRefGoogle Scholar
  35. 35.
    Thoumie, P., D. Lamotte, S. Cantalloube, M. Faucher, and G. Amarenco. Motor determinants of gait in 100 ambulatory patients with multiple sclerosis. Mult. Scler. 11:485–491, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Michael J. Socie
    • 1
  • Brian M. Sandroff
    • 2
  • John H. Pula
    • 3
  • Elizabeth T. Hsiao-Wecksler
    • 1
  • Robert W. Motl
    • 2
  • Jacob J. Sosnoff
    • 2
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Kinesiology and Community HealthUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Illinois Neurological InstituteUniversity of Illinois College of Medicine at PeoriaPeoriaUSA

Personalised recommendations