Annals of Biomedical Engineering

, Volume 41, Issue 3, pp 469–476 | Cite as

Pancreatic Islet Cell Transplantation: An Update

  • Dimitrios T. Hatziavramidis
  • Theodore M. Karatzas
  • George P. Chrousos
Article

Abstract

Transplantation of pancreatic islets, as a therapeutic modality for type 1 diabetes mellitus (T1DM), at this stage of its development, is reserved for patients with severe glycemic variability, progressive diabetic complications, and life threatening hypoglycemia unawareness, regardless of intensive insulin management. It has not succeeded to become the method of choice for treating T1DM because of limited supply and suboptimal yields of procurement and isolation of islets, graft failure, and relatively high requirements, i.e., at least 10,000 functional Islet Equivalents per kg of patient weight, to achieve prolonged insulin independence and glucose stability. Efforts aimed at making islet transplantation a competitive alternative to exogenous insulin injections for treating T1DM have focused on improving the longevity and functionality of islet cells. In order to succeed, these efforts need to be complemented by others to optimize the rate and efficiency of encapsulation.

Keywords

Diabetes type 1 Pancreatic cell islet Immunoisolation Encapsulation device Hydrogel Selective withdrawal Hydrodynamic focusing Valveless pump 

References

  1. 1.
    Blyth, M. G., and C. Pozrikidis. Particle encapsulation due to thread breakup in stokes flow. J. Fluid Mech. 617:141–166, 2008.CrossRefGoogle Scholar
  2. 2.
    Cohen, I., H. Li, J. L. Hougland, et al. Using selective withdrawal to coat microparticles. Science 292:265–267, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Cruise, G. M., O. D. Hegre, D. S. Scharp, and J. A. Hubbell. A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets. Biotechnol. Bioeng. 57:655–665, 1998.PubMedCrossRefGoogle Scholar
  4. 4.
    de Vos, P., B. J. de Haan, J. A. Kamps, et al. ζ-Potentials of alginate-PLL capsules: a predictive measure for biocompatibility? J. Biomed. Mater. Res. A 80:813–819, 2007.PubMedGoogle Scholar
  5. 5.
    Golocheikine, A., V. Tiriveedhi, N. Angaswamy, et al. Cooperative signaling for angiogenesis and nonvascularization by VEGF and HGF following islet transplantation. Transplantation 90:1366–1373, 2010.CrossRefGoogle Scholar
  6. 6.
    Hatziavramidis, D., and C. Pozrikidis. Hydrodynamic analysis of pancreatic islet micro-encapsulation by selective withdrawal. Eng. Anal. Bound. Elem. 32:11–20, 2008.CrossRefGoogle Scholar
  7. 7.
    Hu, H. H., D. D. Joseph, and M. J. Crochet. Direct simulation of fluid particle motions. Theor. Comput. Fluid Dyn. 3:285–306, 1992.CrossRefGoogle Scholar
  8. 8.
    Kizilel, S., V. H. Perez-Luna, and F. Teymour. Photopolymerization of poly(ethylene glycol) diacrylate on eosin-functionalized surfaces. Langmuir 20:8652–8658, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Kroon, E., L. A. Martinson, K. Kadoya, et al. Pancreatic endotherm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26:443–452, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Lakey, J. R., T. Kin, G. L. Warnock, et al. Long-term graft function after allogeneic islet transplantation. Cell Transplant. 16:441–446, 2007.PubMedGoogle Scholar
  11. 11.
    Lee, G. B., C. I. Hung, B. J. Ke, et al. Hydrodynamic focusing for a micromachined flow cytometer. J. Fluid Eng. Trans. ASME 123:672–679, 2001.CrossRefGoogle Scholar
  12. 12.
    Lister, J. R. Selective withdrawal from viscous two-layer system. J. Fluid Mech. 198:231–254, 1989.CrossRefGoogle Scholar
  13. 13.
    McCall, M., C. Toso, J. Emamaullee, et al. The caspase inhibitor IDN-6556 (PF3491390) improves marginal mass engraftment after islet transplantation in mice. Surgery 150:48–55, 2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Miao, G., J. Mace, M. Kirby, et al. In vitro and in vivo improvement of islet survival following treatment with nerve growth factor. Transplantation 81:519–524, 2006.PubMedCrossRefGoogle Scholar
  15. 15.
    O’Sullivan, E. S., A. Vegas, D. G. Anderson, and G. C. Weir. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocrine Rev. 32:827–844, 2011.CrossRefGoogle Scholar
  16. 16.
    Olsson, A., G. Stemme, and E. Stemme. Diffuser-element design investigation for valve-less pumps. Sensors Actuators A 57:137–143, 1996.CrossRefGoogle Scholar
  17. 17.
    Pan, L. S., T. Y. Ng, G. R. Liu, et al. Analytical solutions for the dynamic analysis of a valveless micropump. Sensors Actuators A 93:173–181, 2001.CrossRefGoogle Scholar
  18. 18.
    Pileggi, A., R. D. Molano, T. Berney, et al. Heme Oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes 50:1983–1991, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Plesner, A. and C. B. Verchere. Advances and challenges in islet transplantation: islet procurement rates and lessons learned from suboptimal islet transplantation. J. Transplant. 2011: article ID 979527. doi:10.1155/2011/979527.
  20. 20.
    Plesner, A., G. Soukhatcheva, R. G. Korneluk, and C. B. Verchere. XIAP inhibition of β-cell apoptosis reduces the number of islets required to restore euglycemia in a syngeneic islet transplantation model. Islets 2:1–6, 2010.CrossRefGoogle Scholar
  21. 21.
    Rivas-Carrillo, J. D., A. Soto-Gutierez, N. Navarro-Alvarez, et al. Cell-permeable pentapeptide V5 inhibits apoptosis and enhances insulin secretion, allowing experimental single-donor islet transplantation in mice. Diabetes 56:1259–1267, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Robertson, R. P. Islet transplantation a decade later and strategies for filling a half-full glass. Diabetes 59:1285–1291, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Ryan, E. A., J. R. T. Lakey, B. W. Paty, et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 51:2148–2157, 2002.PubMedCrossRefGoogle Scholar
  24. 24.
    Schneider, S., P. Feilen, V. Sloty, et al. Multilayer capsules: a promising microencapsulation system for transplantation of pancreatic islets. Biomaterials 22:1961–1970, 2001.PubMedCrossRefGoogle Scholar
  25. 25.
    Scott, W. E., B. P. Weegman, J. Ferrer-Fabrega, et al. Pancreas oxygen persufflation increases ATP levels as shown by nuclear magnetic resonance. Transplant. Proc. 42:2011–2015, 2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Shapiro, A. M. J., J. R. T. Lakey, E. A. Ryan, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:230–238, 2000.PubMedCrossRefGoogle Scholar
  27. 27.
    Shapiro, A. M. J., C. Ricordi, B. J. Hering, et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355:1318–1330, 2006.PubMedCrossRefGoogle Scholar
  28. 28.
    Sharp, D., P. Lacy, C. Ricordi, et al. Human islet transplantation in patients with type I diabetes. Transplant. Proc. 21:2744–2745, 1989.Google Scholar
  29. 29.
    Tateishi, K., J. He, O. Taranova, et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J. Biol. Chem. 283:31601–31607, 2008.PubMedCrossRefGoogle Scholar
  30. 30.
    Uonaga, T., K. Toyoda, T. Okitsu, et al. FGF-21 enhances islet engraftment in mouse syngeneic islet transplantation model. Islets 2:247–251, 2010.PubMedCrossRefGoogle Scholar
  31. 31.
    Wyman, J. L., S. Kizilel, R. Skarbek, et al. Immunoisolating pancreatic islets by encapsulation with selective withdrawal. Small 3:683–690, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Yamahata, C., C. Vandevyver, F. Lacharme, et al. Pumping of mammalian cells with a nozzle-diffuser micropump. Lab Chip 5:1083–1088, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Dimitrios T. Hatziavramidis
    • 1
  • Theodore M. Karatzas
    • 2
  • George P. Chrousos
    • 3
  1. 1.School of Chemical Engineering, National Technical University of AthensAthensGreece
  2. 2.2nd Department of Propaedeutic Surgery, School of MedicineUniversity of AthensAthensGreece
  3. 3.1st Pediatric Clinic, School of MedicineUniversity of AthensAthensGreece

Personalised recommendations